Suppr超能文献

一种用于配对多个二元终点数据推断的稳健似然方法。

A robust likelihood approach to inference for paired multiple binary endpoints data.

作者信息

Tsou Tsung-Shan, Hsiao Wei-Cheng

机构信息

Institute of Statistics, National Central University, Taoyuan City, Taiwan.

Department of Financial Engineering and Actuarial Mathematics, Soochow University, Taipei City, Taiwan.

出版信息

J Appl Stat. 2024 Feb 27;51(14):2851-2865. doi: 10.1080/02664763.2024.2321904. eCollection 2024.

Abstract

We introduce a robust likelihood approach to inference for paired multiple binary endpoints data. One can easily implement the methodology without dealing with the model that incorporates a large number of joint probabilities of no direct relevance to the inference of interest. We present the robust score test statistic for testing the equality of two treatment effects to exemplify the utility and simplicity of the method. Our novel technique is applicable when patients have different numbers of endpoints and for unpaired endpoints. The extension of our robust approach to multiple endpoints data with more categories is straightforward. We use simulations and real data analysis to highlight the efficacy of our robust procedure.

摘要

我们引入一种稳健似然方法来推断配对多二元终点数据。人们可以轻松实施该方法,而无需处理包含大量与感兴趣的推断无直接关联的联合概率的模型。我们给出用于检验两种治疗效果相等性的稳健得分检验统计量,以例证该方法的实用性和简便性。我们的新技术适用于患者具有不同数量终点的情况以及未配对的终点。将我们的稳健方法扩展到更多类别多终点数据很简单。我们使用模拟和实际数据分析来突出我们稳健程序的有效性。

相似文献

4
Robust likelihood inference for diagnostic accuracy measures for paired organs.用于配对器官诊断准确性测量的稳健似然推断。
Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3163-3175. doi: 10.1177/0962280218798170. Epub 2018 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验