Chen Ruohui, Lin Tuo, Liu Lin, Liu Jinyuan, Chen Ruifeng, Zou Jingjing, Liu Chenyu, Natarajan Loki, Tang Wan, Zhang Xinlian, Tu Xin
Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Department of Biostatistics, University of Florida, Gainesville, FL, USA.
J Appl Stat. 2024 May 15;51(16):3267-3291. doi: 10.1080/02664763.2024.2346357. eCollection 2024.
The Mann-Whitney-Wilcoxon rank sum test (MWWRST) is a widely used method for comparing two treatment groups in randomized control trials, particularly when dealing with highly skewed data. However, when applied to observational study data, the MWWRST often yields invalid results for causal inference. To address this limitation, Wu (, Stat. Med. 33 (2014), pp. 1261-1271) introduced an approach that incorporates inverse probability weighting (IPW) into this rank-based statistic to mitigate confounding effects. Subsequently, Mao (, Biometrika 105 (2018), pp. 215-220), Zhang (, J. Causal Inference 7 (2019), ARTICLE ID 20180010), and Ai (, J. Stat. Plan. Inference 209 (2020), pp. 85-100) extended this IPW estimator to develop doubly robust estimators. Nevertheless, each of these approaches has notable limitations. Mao's method imposes stringent assumptions that may not align with real-world study data. Zhang 's (, J. Causal Inference 7 (2019), ARTICLE ID 20180010) estimators rely on bootstrap inference, which suffers from computational inefficiency and lacks known asymptotic properties. Meanwhile, Ai (, J. Stat. Plan. Inference 209 (2020), pp. 85-100) primarily focus on testing the null hypothesis of equal distributions between two groups, which is a more stringent assumption that may not be well-suited to the primary practical application of MWWRST. In this paper, we aim to address these limitations by leveraging functional response models (FRM) to develop doubly robust estimators. We demonstrate the performance of our proposed approach using both simulated and real study data.
曼-惠特尼-威尔科克森秩和检验(MWWRST)是随机对照试验中比较两个治疗组的一种广泛使用的方法,特别是在处理高度偏态数据时。然而,当应用于观察性研究数据时,MWWRST在因果推断方面往往会产生无效结果。为了解决这一局限性,吴(《统计医学》33(2014),第1261 - 1271页)引入了一种方法,将逆概率加权(IPW)纳入这个基于秩的统计量中,以减轻混杂效应。随后,毛(《生物统计学》105(2018),第215 - 220页)、张(《因果推断杂志》7(2019),文章编号20180010)和艾(《统计规划与推断杂志》209(2020),第85 - 100页)扩展了这个IPW估计量,以开发双稳健估计量。然而,这些方法中的每一种都有显著的局限性。毛的方法施加了严格的假设,可能与实际研究数据不一致。张(《因果推断杂志》7(2019),文章编号20180010)的估计量依赖于自助推断,这存在计算效率低下的问题,并且缺乏已知的渐近性质。同时,艾(《统计规划与推断杂志》209(2020),第85 - 100页)主要专注于检验两组之间分布相等的零假设,这是一个更严格的假设,可能不太适合MWWRST的主要实际应用。在本文中,我们旨在通过利用功能响应模型(FRM)来开发双稳健估计量,以解决这些局限性。我们使用模拟和实际研究数据展示了我们提出的方法的性能。