Suppr超能文献

加权广义评分统计量用于比较诊断试验的预测值。

A weighted generalized score statistic for comparison of predictive values of diagnostic tests.

机构信息

Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27715, USA.

出版信息

Stat Med. 2013 Mar 15;32(6):964-77. doi: 10.1002/sim.5587. Epub 2012 Aug 22.

Abstract

Positive and negative predictive values are important measures of a medical diagnostic test performance. We consider testing equality of two positive or two negative predictive values within a paired design in which all patients receive two diagnostic tests. The existing statistical tests for testing equality of predictive values are either Wald tests based on the multinomial distribution or the empirical Wald and generalized score tests within the generalized estimating equations (GEE) framework. As presented in the literature, these test statistics have considerably complex formulas without clear intuitive insight. We propose their re-formulations that are mathematically equivalent but algebraically simple and intuitive. As is clearly seen with a new re-formulation we presented, the generalized score statistic does not always reduce to the commonly used score statistic in the independent samples case. To alleviate this, we introduce a weighted generalized score (WGS) test statistic that incorporates empirical covariance matrix with newly proposed weights. This statistic is simple to compute, always reduces to the score statistic in the independent samples situation, and preserves type I error better than the other statistics as demonstrated by simulations. Thus, we believe that the proposed WGS statistic is the preferred statistic for testing equality of two predictive values and for corresponding sample size computations. The new formulas of the Wald statistics may be useful for easy computation of confidence intervals for difference of predictive values. The introduced concepts have potential to lead to development of the WGS test statistic in a general GEE setting.

摘要

阳性和阴性预测值是医学诊断测试性能的重要衡量标准。我们考虑在配对设计中测试两个阳性或两个阴性预测值是否相等,其中所有患者都接受两种诊断测试。用于测试预测值相等的现有统计检验方法是基于多项分布的 Wald 检验或广义估计方程(GEE)框架内的经验 Wald 和广义得分检验。如文献中所述,这些检验统计量的公式相当复杂,没有明确的直观见解。我们提出了它们的重新公式化,这些公式在数学上是等效的,但在代数上是简单和直观的。正如我们提出的新重新公式所清楚表明的那样,广义得分统计量并不总是简化为独立样本情况下常用的得分统计量。为了解决这个问题,我们引入了加权广义得分(WGS)检验统计量,该统计量结合了经验协方差矩阵和新提出的权重。这个统计量易于计算,在独立样本情况下总是简化为得分统计量,并且通过模拟证明比其他统计量更好地保持了Ⅰ型错误率。因此,我们相信所提出的 WGS 统计量是测试两个预测值相等和相应样本量计算的首选统计量。Wald 统计量的新公式可能有助于预测值差异置信区间的简便计算。所引入的概念有可能导致在一般 GEE 环境中开发 WGS 检验统计量。

相似文献

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验