Suppr超能文献

通过高精度磁共振成像分析采用Xception卷积神经网络进行脑肿瘤诊断。

Employing Xception convolutional neural network through high-precision MRI analysis for brain tumor diagnosis.

作者信息

Sathya R, Mahesh T R, Bhatia Khan Surbhi, Malibari Areej A, Asiri Fatima, Rehman Attique Ur, Malwi Wajdan Al

机构信息

Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram, Chennai, India.

Department of Computer Science and Engineering, JAIN (Deemed-to-be University), Bengaluru, India.

出版信息

Front Med (Lausanne). 2024 Nov 8;11:1487713. doi: 10.3389/fmed.2024.1487713. eCollection 2024.

Abstract

The classification of brain tumors from medical imaging is pivotal for accurate medical diagnosis but remains challenging due to the intricate morphologies of tumors and the precision required. Existing methodologies, including manual MRI evaluations and computer-assisted systems, primarily utilize conventional machine learning and pre-trained deep learning models. These systems often suffer from overfitting due to modest medical imaging datasets and exhibit limited generalizability on unseen data, alongside substantial computational demands that hinder real-time application. To enhance diagnostic accuracy and reliability, this research introduces an advanced model utilizing the Xception architecture, enriched with additional batch normalization and dropout layers to mitigate overfitting. This model is further refined by leveraging large-scale data through transfer learning and employing a customized dense layer setup tailored to effectively distinguish between meningioma, glioma, and pituitary tumor categories. This hybrid method not only capitalizes on the strengths of pre-trained network features but also adapts specific training to a targeted dataset, thereby improving the generalization capacity of the model across different imaging conditions. Demonstrating an important improvement in diagnostic performance, the proposed model achieves a classification accuracy of 98.039% on the test dataset, with precision and recall rates above 96% for all categories. These results underscore the possibility of the model as a reliable diagnostic tool in clinical settings, significantly surpassing existing diagnostic protocols for brain tumors.

摘要

从医学影像中对脑肿瘤进行分类对于准确的医学诊断至关重要,但由于肿瘤复杂的形态和所需的精度,这仍然具有挑战性。现有的方法,包括手动MRI评估和计算机辅助系统,主要使用传统的机器学习和预训练的深度学习模型。由于医学影像数据集有限,这些系统经常遭受过拟合问题,并且在未见数据上的泛化能力有限,同时还存在大量的计算需求,这阻碍了实时应用。为了提高诊断的准确性和可靠性,本研究引入了一种先进的模型,该模型利用Xception架构,并通过额外的批量归一化和随机失活层来减轻过拟合。通过迁移学习利用大规模数据,并采用定制的密集层设置来有效区分脑膜瘤、胶质瘤和垂体瘤类别,对该模型进行了进一步优化。这种混合方法不仅利用了预训练网络特征的优势,还针对目标数据集进行了特定训练,从而提高了模型在不同成像条件下的泛化能力。所提出的模型在测试数据集上实现了98.039%的分类准确率,所有类别的精确率和召回率均高于96%,证明了诊断性能的重要提升。这些结果强调了该模型作为临床环境中可靠诊断工具的可能性,显著超越了现有的脑肿瘤诊断方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb1f/11601128/58b85b65c59a/fmed-11-1487713-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验