Suppr超能文献

SI-MIL:驯服深度多实例学习以实现千兆像素组织病理学中的自解释性

SI-MIL: Taming Deep MIL for Self-Interpretability in Gigapixel Histopathology.

作者信息

Kapse Saarthak, Pati Pushpak, Das Srijan, Zhang Jingwei, Chen Chao, Vakalopoulou Maria, Saltz Joel, Samaras Dimitris, Gupta Rajarsi R, Prasanna Prateek

机构信息

Stony Brook University, USA.

Independent Researcher.

出版信息

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2024 Jun;2024:11226-11237. doi: 10.1109/cvpr52733.2024.01067. Epub 2024 Sep 16.

Abstract

Introducing interpretability and reasoning into Multiple Instance Learning (MIL) methods for Whole Slide Image (WSI) analysis is challenging, given the complexity of gigapixel slides. Traditionally, MIL interpretability is limited to identifying salient regions deemed pertinent for downstream tasks, offering little insight to the end-user (pathologist) regarding the rationale behind these selections. To address this, we propose Self-Interpretable MIL (SI-MIL), a method intrinsically designed for interpretability from the very outset. SI-MIL employs a deep MIL framework to guide an interpretable branch grounded on handcrafted pathological features, facilitating linear predictions. Beyond identifying salient regions, SI-MIL uniquely provides feature-level interpretations rooted in pathological insights for WSIs. Notably, SI-MIL, with its linear prediction constraints, challenges the prevalent myth of an inevitable trade-off between model interpretability and performance, demonstrating competitive results compared to state-of-the-art methods on WSI-level prediction tasks across three cancer types. In addition, we thoroughly benchmark the local-and global-interpretability of SI-MIL in terms of statistical analysis, a domain expert study, and desiderata of interpretability, namely, user-friendliness and faithfulness.

摘要

鉴于千兆像素幻灯片的复杂性,将可解释性和推理引入用于全幻灯片图像(WSI)分析的多实例学习(MIL)方法具有挑战性。传统上,MIL的可解释性仅限于识别被认为与下游任务相关的显著区域,几乎没有向最终用户(病理学家)提供关于这些选择背后原理的见解。为了解决这个问题,我们提出了自可解释MIL(SI-MIL),这是一种从一开始就为可解释性而内在设计的方法。SI-MIL采用深度MIL框架来指导基于手工制作的病理特征的可解释分支,促进线性预测。除了识别显著区域外,SI-MIL独特地为WSIs提供了基于病理见解的特征级解释。值得注意的是,SI-MIL凭借其线性预测约束,挑战了模型可解释性和性能之间不可避免的权衡这一普遍观念,在三种癌症类型的WSI级预测任务中,与最先进的方法相比展示了具有竞争力的结果。此外,我们在统计分析、领域专家研究以及可解释性的要求(即用户友好性和忠实性)方面对SI-MIL的局部和全局可解释性进行了全面的基准测试。

相似文献

1
SI-MIL: Taming Deep MIL for Self-Interpretability in Gigapixel Histopathology.SI-MIL:驯服深度多实例学习以实现千兆像素组织病理学中的自解释性
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2024 Jun;2024:11226-11237. doi: 10.1109/cvpr52733.2024.01067. Epub 2024 Sep 16.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验