文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于细胞核水平先验知识约束的多实例学习用于乳腺组织病理学全切片图像分类

Nuclei-level prior knowledge constrained multiple instance learning for breast histopathology whole slide image classification.

作者信息

Wang Xunping, Yuan Wei

机构信息

School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan 430079, China.

Co-Creation Center for Disaster Resilience, International Research Institute of Disaster Science, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai 980-8572, Japan.

出版信息

iScience. 2024 Apr 26;27(6):109826. doi: 10.1016/j.isci.2024.109826. eCollection 2024 Jun 21.


DOI:10.1016/j.isci.2024.109826
PMID:38832012
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11145340/
Abstract

New breast cancer cases have surpassed lung cancer, becoming the world's most prevalent cancer. Despite advancing medical image analysis, deep learning's lack of interpretability limits its adoption among pathologists. Hence, a nuclei-level prior knowledge constrained multiple instance learning (MIL) (NPKC-MIL) for breast whole slide image (WSI) classification is proposed. NPKC-MIL primarily involves the following steps: Initially, employing the transfer learning to extract patch-level features and aggregate them into slide-level features through attention pooling. Subsequently, abstract the extracted nuclei as nodes, establish nucleus topology using the K-NN (K-Nearest Neighbors, K-NN) algorithm, and create handcrafted features for nodes. Finally, combine patch-level deep learning features with nuclei-level handcrafted features to fine-tune classification results generated by slide-level deep learning features. The experimental results demonstrate that NPKC-MIL outperforms current comparable deep learning models. NPKC-MIL expands the analytical dimension of WSI classification tasks and integrates prior knowledge into deep learning models to improve interpretability.

摘要

新的乳腺癌病例已超过肺癌,成为全球最常见的癌症。尽管医学图像分析不断进步,但深度学习缺乏可解释性限制了其在病理学家中的应用。因此,提出了一种用于乳腺全切片图像(WSI)分类的细胞核水平先验知识约束多实例学习(MIL)(NPKC-MIL)方法。NPKC-MIL主要包括以下步骤:首先,利用迁移学习提取补丁级特征,并通过注意力池化将其聚合为切片级特征。随后,将提取的细胞核抽象为节点,使用K近邻(K-NN)算法建立细胞核拓扑结构,并为节点创建手工特征。最后,将补丁级深度学习特征与细胞核级手工特征相结合,对切片级深度学习特征生成的分类结果进行微调。实验结果表明,NPKC-MIL优于当前可比的深度学习模型。NPKC-MIL扩展了WSI分类任务的分析维度,并将先验知识集成到深度学习模型中以提高可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/afe13bd07724/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/6a1516c2c37b/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/89ff663e8a2a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/915130c355e9/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/536d94a4e168/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/bce9b0bf488e/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/60fb382edc8f/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/a7f343e15717/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/99c1666e5e2f/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/13621841f52c/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/aa57e70110bf/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/4c4857108f30/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/c99dd44d7d51/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/305d9046dd3b/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/afe13bd07724/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/6a1516c2c37b/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/89ff663e8a2a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/915130c355e9/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/536d94a4e168/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/bce9b0bf488e/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/60fb382edc8f/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/a7f343e15717/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/99c1666e5e2f/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/13621841f52c/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/aa57e70110bf/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/4c4857108f30/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/c99dd44d7d51/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/305d9046dd3b/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/11145340/afe13bd07724/gr13.jpg

相似文献

[1]
Nuclei-level prior knowledge constrained multiple instance learning for breast histopathology whole slide image classification.

iScience. 2024-4-26

[2]
MuRCL: Multi-Instance Reinforcement Contrastive Learning for Whole Slide Image Classification.

IEEE Trans Med Imaging. 2023-5

[3]
E-MIL: An explainable and evidential multiple instance learning framework for whole slide image classification.

Med Image Anal. 2024-10

[4]
Iterative multiple instance learning for weakly annotated whole slide image classification.

Phys Med Biol. 2023-7-19

[5]
Attention2Minority: A salient instance inference-based multiple instance learning for classifying small lesions in whole slide images.

Comput Biol Med. 2023-12

[6]
LESS: Label-efficient multi-scale learning for cytological whole slide image screening.

Med Image Anal. 2024-5

[7]
Self-Supervised Representation Distribution Learning for Reliable Data Augmentation in Histopathology WSI Classification.

IEEE Trans Med Imaging. 2025-1

[8]
Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks.

Med Image Anal. 2020-10

[9]
Masked autoencoders with handcrafted feature predictions: Transformer for weakly supervised esophageal cancer classification.

Comput Methods Programs Biomed. 2024-2

[10]
A universal multiple instance learning framework for whole slide image analysis.

Comput Biol Med. 2024-8

本文引用的文献

[1]
BRACS: A Dataset for BReAst Carcinoma Subtyping in H&E Histology Images.

Database (Oxford). 2022-10-17

[2]
Dual-stream Multiple Instance Learning Network for Whole Slide Image Classification with Self-supervised Contrastive Learning.

Conf Comput Vis Pattern Recognit Workshops. 2021-6

[3]
High resolution histopathology image generation and segmentation through adversarial training.

Med Image Anal. 2022-1

[4]
Weakly Supervised Deep Ordinal Cox Model for Survival Prediction From Whole-Slide Pathological Images.

IEEE Trans Med Imaging. 2021-12

[5]
Computational Image Analysis Identifies Histopathological Image Features Associated With Somatic Mutations and Patient Survival in Gastric Adenocarcinoma.

Front Oncol. 2021-3-31

[6]
Data-efficient and weakly supervised computational pathology on whole-slide images.

Nat Biomed Eng. 2021-6

[7]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[8]
HookNet: Multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images.

Med Image Anal. 2021-2

[9]
Using deep learning to predict anti-PD-1 response in melanoma and lung cancer patients from histopathology images.

Transl Oncol. 2021-1

[10]
Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types.

Sci Data. 2020-6-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索