Mangine Nicolas R, Laurence Devin W, Sabin Patricia M, Wu Wensi, Herz Christian, Zelonis Christopher N, Unger Justin S, Pinter Csaba, Lasso Andras, Maas Steve A, Weiss Jeffrey A, Jolley Matthew A
Jolley Lab, Department of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, US.
Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
ArXiv. 2024 Nov 14:arXiv:2411.09599v1.
Many approaches have been used to model chordae tendineae geometries in finite element simulations of atrioventricular heart valves. Unfortunately, current "functional" chordae tendineae geometries lack fidelity (e.g., branching) that would be helpful when informing clinical decisions. The objectives of this work are (i) to improve synthetic chordae tendineae geometry fidelity to consider branching and (ii) to define how the chordae tendineae geometry affects finite element simulations of valve closure.
In this work, we develop an open-source method to construct synthetic chordae tendineae geometries in the SlicerHeart Extension of 3D Slicer. The generated geometries are then used in FEBio finite element simulations of atrioventricular valve function to evaluate how variations in chordae tendineae geometry influence valve behavior. Effects are evaluated using functional and mechanical metrics.
Our findings demonstrated that altering the chordae tendineae geometry of a stereotypical mitral valve led to changes in clinically relevant valve metrics (regurgitant orifice area, contact area, and billowing volume) and valve mechanics (first principal strains). Specifically, cross sectional area had the most influence over valve closure metrics, followed by chordae tendineae density, length, radius and branches. We then used this information to showcase the flexibility of our new workflow by altering the chordae tendineae geometry of two additional geometries (mitral valve with annular dilation and tricuspid valve) to improve finite element predictions.
This study presents a flexible, open-source method for generating synthetic chordae tendineae with realistic branching structures. Further, we establish relationships between the chordae tendineae geometry and valve functional/mechanical metrics. This research contribution helps enrich our opensource workflow and brings the finite element simulations closer to use in a patient-specific clinical setting.
在房室心脏瓣膜的有限元模拟中,已经采用了多种方法来对腱索几何形状进行建模。遗憾的是,当前的“功能性”腱索几何形状缺乏在临床决策时会有所帮助的逼真度(例如分支情况)。本研究的目的是:(i)提高合成腱索几何形状的逼真度以考虑分支情况;(ii)确定腱索几何形状如何影响瓣膜关闭的有限元模拟。
在本研究中,我们开发了一种开源方法,用于在3D Slicer的SlicerHeart扩展中构建合成腱索几何形状。然后将生成的几何形状用于房室瓣功能的FEBio有限元模拟,以评估腱索几何形状的变化如何影响瓣膜行为。使用功能和力学指标来评估其效果。
我们的研究结果表明,改变典型二尖瓣的腱索几何形状会导致临床相关瓣膜指标(反流口面积、接触面积和膨出体积)以及瓣膜力学(第一主应变)发生变化。具体而言,横截面积对瓣膜关闭指标的影响最大,其次是腱索密度、长度、半径和分支。然后,我们利用这些信息,通过改变另外两种几何形状(伴有瓣环扩张的二尖瓣和三尖瓣)的腱索几何形状来展示我们新工作流程的灵活性,以改进有限元预测。
本研究提出了一种灵活的开源方法,用于生成具有逼真分支结构的合成腱索。此外,我们建立了腱索几何形状与瓣膜功能/力学指标之间的关系。这一研究成果有助于丰富我们的开源工作流程,并使有限元模拟更接近用于特定患者的临床环境。