Suppr超能文献

通过系统地扩展有向无环图来寻找高后验密度系统发育树。

Finding high posterior density phylogenies by systematically extending a directed acyclic graph.

作者信息

Jennings-Shaffer Chris, Rich David H, Macaulay Matthew, Karcher Michael D, Ganapathy Tanvi, Kiami Shosuke, Kooperberg Anna, Zhang Cheng, Suchard Marc A, Matsen Frederick A

机构信息

Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.

University of Technology Sydney, Australian Institute for Microbiology & Infection, Sydney, Australia.

出版信息

ArXiv. 2024 Nov 18:arXiv:2411.09074v2.

Abstract

Bayesian phylogenetics typically estimates a posterior distribution, or aspects thereof, using Markov chain Monte Carlo methods. These methods integrate over tree space by applying local rearrangements to move a tree through its space as a random walk. Previous work explored the possibility of replacing this random walk with a systematic search, but was quickly overwhelmed by the large number of probable trees in the posterior distribution. In this paper we develop methods to sidestep this problem using a recently introduced structure called the subsplit directed acyclic graph (sDAG). This structure can represent many trees at once, and local rearrangements of trees translate to methods of enlarging the sDAG. Here we propose two methods of introducing, ranking, and selecting local rearrangements on sDAGs to produce a collection of trees with high posterior density. One of these methods successfully recovers the set of high posterior density trees across a range of data sets. However, we find that a simpler strategy of aggregating trees into an sDAG in fact is computationally faster and returns a higher fraction of probable trees.

摘要

贝叶斯系统发育学通常使用马尔可夫链蒙特卡罗方法来估计后验分布或其某些方面。这些方法通过应用局部重排,以随机游走的方式在树空间中移动一棵树,从而在树空间上进行积分。先前的工作探讨了用系统搜索取代这种随机游走的可能性,但很快就被后验分布中大量可能的树淹没了。在本文中,我们开发了一些方法,利用最近引入的一种称为子分裂有向无环图(sDAG)的结构来避开这个问题。这种结构可以一次表示许多树,树的局部重排转化为扩大sDAG的方法。在这里,我们提出了两种在sDAG上引入、排序和选择局部重排的方法,以生成一组具有高后验密度的树。其中一种方法成功地在一系列数据集上恢复了高后验密度树的集合。然而,我们发现,将树聚合到sDAG中的一种更简单策略实际上在计算上更快,并且返回的可能树的比例更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c5e/11601806/12ff17a21176/nihpp-2411.09074v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验