Suppr超能文献

由铟/钾协同相互作用实现的高效长循环水系铟金属电池。

A high-efficiency and long-cycling aqueous indium metal battery enabled by synergistic In/K interactions.

作者信息

Chang Songyang, Hou Wentao, Conde-Delmoral Amanda, Ullah Irfan, Florez Gomez Jose Fernando, Morell Gerardo, Wu Xianyong

机构信息

Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925-2537, USA.

Department of Physics, University of Puerto Rico-Rio Piedras Campus, San Juan, PR, 00925-2537, USA.

出版信息

Nanoscale. 2025 Jan 2;17(2):855-863. doi: 10.1039/d4nr02905d.

Abstract

Aqueous trivalent metal batteries are promising options for energy storage, owing to their ability to transfer three electrons during redox reactions. However, advances in this field have been limited by challenges such as incompatible M/M electrode potentials and salt hydrolysis. Herein, we identify the trivalent indium metal as a viable candidate and demonstrate a high-performance indium-Prussian blue hybrid battery using a K/In mixture electrolyte. Interestingly, there exists a synergistic interaction between K and In ions, which enhances the coulombic efficiency and prolongs the cycling life. Specifically, the addition of K elevates the In/In plating efficiency from 99.3% to 99.6%, due to the decreased electrolyte acidity and enlarged indium particle size. Simultaneously, the presence of In creates an inherently acidic environment (pH ∼3.1), which effectively stabilizes K insertion into the Prussian blue framework. Consequently, this hybrid battery delivered a high capacity of 130 mA h g, an exceptional rate of 96 A g (∼740 C), and an extraordinary cycling life of 48 000 cycles. This work offers an innovative approach to develop high-performance hybrid metal batteries.

摘要

水系三价金属电池因其在氧化还原反应中能够转移三个电子,是很有前景的储能选择。然而,该领域的进展受到诸如M/M电极电位不兼容和盐类水解等挑战的限制。在此,我们确定三价铟金属是一种可行的候选材料,并展示了一种使用K/In混合电解质的高性能铟-普鲁士蓝混合电池。有趣的是,K离子和In离子之间存在协同相互作用,这提高了库仑效率并延长了循环寿命。具体而言,由于电解质酸度降低和铟颗粒尺寸增大,K的加入使In/In电镀效率从99.3%提高到99.6%。同时,In的存在创造了一个固有酸性环境(pH约为3.1),这有效地稳定了K插入普鲁士蓝框架的过程。因此,这种混合电池具有130 mA h g的高容量、96 A g(约740 C)的优异倍率以及48000次循环的超长循环寿命。这项工作为开发高性能混合金属电池提供了一种创新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验