Wu I-En, Kalejaye Lateefat, Lai Pin-Kuang
Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken 07030 New Jersey.
Mol Pharm. 2025 Jan 6;22(1):142-153. doi: 10.1021/acs.molpharmaceut.4c00804. Epub 2024 Nov 28.
Monoclonal antibodies (mAbs) have found extensive applications and development in treating various diseases. From the pharmaceutical industry's perspective, the journey from the design and development of mAbs to clinical testing and large-scale production is a highly time-consuming and resource-intensive process. During the research and development phase, assessing and optimizing the developability of mAbs is of paramount importance to ensure their success as candidates for therapeutic drugs. The critical factors influencing mAb development are their biophysical properties, such as aggregation propensity, solubility, and viscosity. This study utilized a data set comprising 12 biophysical properties of 137 antibodies from a previous study (Proc Natl Acad Sci USA. 114(5):944-949, 2017). We employed full-length antibody molecular dynamics simulations and machine learning techniques to predict experimental data for these 12 biophysical properties. Additionally, we utilized a newly developed deep learning model called DeepSP, which directly predicts the dynamical and structural properties of spatial aggregation propensity and spatial charge map in different antibody regions from sequences. Our research findings indicate that the machine learning models we developed outperform previous methods in predicting most biophysical properties. Furthermore, the DeepSP model yields similar predictive results compared to molecular dynamic simulations while significantly reducing computational time. The code and parameters are freely available at https://github.com/Lailabcode/AbDev. Also, the webapp, AbDev, for 12 biophysical properties prediction has been developed and provided at https://devpred.onrender.com/AbDev.
单克隆抗体(mAbs)在治疗各种疾病方面已得到广泛应用和发展。从制药行业的角度来看,单克隆抗体从设计、开发到临床试验和大规模生产的过程是一个极其耗时且资源密集的过程。在研发阶段,评估和优化单克隆抗体的可开发性对于确保其作为治疗药物候选物的成功至关重要。影响单克隆抗体开发的关键因素是其生物物理特性,如聚集倾向、溶解度和粘度。本研究使用了一个数据集,该数据集包含来自先前一项研究(《美国国家科学院院刊》。114(5):944 - 949, 2017)的137种抗体的12种生物物理特性。我们采用全长抗体分子动力学模拟和机器学习技术来预测这12种生物物理特性的实验数据。此外,我们使用了一种新开发的深度学习模型DeepSP,它可以直接从序列预测不同抗体区域的空间聚集倾向和空间电荷图的动力学和结构特性。我们的研究结果表明,我们开发的机器学习模型在预测大多数生物物理特性方面优于先前的方法。此外,与分子动力学模拟相比,DeepSP模型产生了相似的预测结果,同时显著减少了计算时间。代码和参数可在https://github.com/Lailabcode/AbDev上免费获取。此外,还开发并提供了用于12种生物物理特性预测的网络应用程序AbDev,网址为https://devpred.onrender.com/AbDev。