Suppr超能文献

DeepSP:基于深度学习的空间特性预测单克隆抗体稳定性

DeepSP: Deep learning-based spatial properties to predict monoclonal antibody stability.

作者信息

Kalejaye Lateefat, Wu I-En, Terry Taylor, Lai Pin-Kuang

机构信息

Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken 07030, NJ, United States.

出版信息

Comput Struct Biotechnol J. 2024 May 18;23:2220-2229. doi: 10.1016/j.csbj.2024.05.029. eCollection 2024 Dec.

Abstract

Therapeutic antibody development faces challenges due to high viscosities and aggregation tendencies. The spatial charge map (SCM) and spatial aggregation propensity (SAP) are computational techniques that aid in predicting viscosity and aggregation, respectively. These methods rely on structural data derived from molecular dynamics (MD) simulations, which are computationally demanding. DeepSCM, a deep learning surrogate model based on sequence information to predict SCM, was recently developed to screen high-concentration antibody viscosity. This study further utilized a dataset of 20,530 antibody sequences to train a convolutional neural network deep learning surrogate model called Deep Spatial Properties (DeepSP). DeepSP directly predicts SAP and SCM scores in different domains of antibody variable regions based solely on their sequences without performing MD simulations. The linear correlation coefficient between DeepSP scores and MD-derived scores for 30 properties achieved values between 0.76 and 0.96 with an average of 0.87. DeepSP descriptors were employed as features to build machine learning models to predict the aggregation rate of 21 antibodies, and the performance is similar to the results obtained from the previous study using MD simulations. This result demonstrates that the DeepSP approach significantly reduces the computational time required compared to MD simulations. The DeepSP model enables the rapid generation of 30 structural properties that can also be used as features in other research to train machine learning models for predicting various antibody stability using sequences only. DeepSP is freely available as an online tool via https://deepspwebapp.onrender.com and the codes and parameters are freely available at https://github.com/Lailabcode/DeepSP.

摘要

由于高粘度和聚集倾向,治疗性抗体的开发面临挑战。空间电荷图(SCM)和空间聚集倾向(SAP)是分别有助于预测粘度和聚集的计算技术。这些方法依赖于从分子动力学(MD)模拟获得的结构数据,而这需要大量的计算。最近开发了一种基于序列信息来预测SCM的深度学习替代模型DeepSCM,用于筛选高浓度抗体的粘度。本研究进一步利用一个包含20,530个抗体序列的数据集来训练一个名为深度空间特性(DeepSP)的卷积神经网络深度学习替代模型。DeepSP仅根据抗体可变区不同结构域的序列直接预测SAP和SCM分数,而无需进行MD模拟。对于30种特性,DeepSP分数与MD衍生分数之间的线性相关系数在0.76至0.96之间,平均为0.87。DeepSP描述符被用作特征来构建机器学习模型,以预测21种抗体的聚集速率,其性能与先前使用MD模拟获得的结果相似。这一结果表明,与MD模拟相比,DeepSP方法显著减少了所需的计算时间。DeepSP模型能够快速生成30种结构特性,这些特性也可作为其他研究中的特征,用于仅使用序列训练机器学习模型来预测各种抗体稳定性。可通过https://deepspwebapp.onrender.com将DeepSP作为在线工具免费获取,其代码和参数可在https://github.com/Lailabcode/DeepSP上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e46a/11140563/6f7abaf2424f/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验