基于随机森林方法的机器学习在风湿科常规诊疗中轴性脊柱关节炎诊断模型的建立。
Identification of a machine learning-based diagnostic model for axial spondyloarthritis in rheumatological routine care using a random forest approach.
机构信息
Rheumatology, Ruhr-Universität Bochum and Rheumazentrum Ruhrgebiet, Bochum, Germany.
Rheumatology, Ruhr-Universität Bochum and Rheumazentrum Ruhrgebiet, Bochum, Germany
出版信息
RMD Open. 2024 Nov 27;10(4):e004702. doi: 10.1136/rmdopen-2024-004702.
OBJECTIVES
In axial spondyloarthritis (axSpA), early diagnosis is crucial, but diagnostic delay remains long and diagnostic criteria do not exist. We aimed to identify a diagnostic model that distinguishes patients with axSpA from patients without axSpA with chronic back pain based on clinical data in routine care.
METHODS
Clinical data from patients with chronic back pain were used, with information on rheumatological examinations based on clinical indications. The total dataset was randomly divided into training and test datasets at a 7:3 ratio. A machine learning-based model was built to distinguish axSpA from non-axSpA using the random forest algorithm. Overall accuracy, sensitivity, specificity and the area under the receiver operating characteristic curve-area under the curve (ROC-AUC) in the test dataset were calculated. The contribution of each variable to the accuracy of the model was assessed.
RESULTS
Data from 939 randomly selected patients were available: 659 diagnosed with axSpA and 280 with non-axSpA. In the test dataset, the model reached an accuracy of 0.9234, a sensitivity of 0.9586, a specificity of 0.8438 and a ROC-AUC of 0.9717. Human leucocyte antigen B27 (HLA-B27) contributed most to the accuracy of the model; that is, the accuracy would suffer most from not using HLA-B27, followed by insidious onset of back pain and erosions in the sacroiliac joint.
CONCLUSIONS
We provide a machine learning-based model that reveals high performance in diagnosing patients with chronic back pain with axSpA versus without axSpA based on information from a tertiary rheumatology practice. This model has the potential to improve diagnostic delay in patients with axSpA in daily routine settings.
目的
在中轴型脊柱关节炎(axSpA)中,早期诊断至关重要,但诊断延迟仍然很长,并且不存在诊断标准。我们旨在根据常规护理中的临床数据,确定一种能够区分 axSpA 患者与慢性背痛无 axSpA 患者的诊断模型。
方法
使用慢性背痛患者的临床数据,并根据临床指征提供关于风湿病检查的信息。整个数据集以 7:3 的比例随机分为训练数据集和测试数据集。使用随机森林算法构建基于机器学习的模型,以区分 axSpA 和非 axSpA。在测试数据集中计算总体准确性、敏感性、特异性和接收器操作特征曲线下的面积(ROC-AUC)。评估每个变量对模型准确性的贡献。
结果
从随机选择的 939 名患者中获得数据:659 名 axSpA 诊断患者和 280 名非 axSpA 诊断患者。在测试数据集中,该模型的准确率为 0.9234,敏感性为 0.9586,特异性为 0.8438,ROC-AUC 为 0.9717。人类白细胞抗原 B27(HLA-B27)对模型的准确性贡献最大;也就是说,如果不使用 HLA-B27,准确性将受到最大影响,其次是腰痛的隐匿性发作和骶髂关节侵蚀。
结论
我们提供了一种基于机器学习的模型,该模型基于三级风湿病实践中的信息,在诊断慢性背痛患者 axSpA 与无 axSpA 方面表现出较高的性能。该模型有可能改善日常实践中 axSpA 患者的诊断延迟。