文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用机器学习结合骶髂关节磁共振成像增强轴向型脊柱关节炎的诊断:一项多中心研究

Enhanced diagnosis of axial spondyloarthritis using machine learning with sacroiliac joint MRI: a multicenter study.

作者信息

Xie Zhuoyao, Chen Zefeiyun, Yang Qinmei, Ye Qiang, Li Xin, Xie Qiuxia, Liu Caolin, Lin Bomiao, Han Xinai, He Yi, Wang Xiaohong, Yang Wei, Zhao Yinghua

机构信息

Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China.

Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.

出版信息

Insights Imaging. 2025 Apr 25;16(1):91. doi: 10.1186/s13244-025-01967-x.


DOI:10.1186/s13244-025-01967-x
PMID:40281350
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12031678/
Abstract

OBJECTIVES: To develop a machine learning (ML)-based model using MRI and clinical risk factors to enhance diagnostic accuracy for axial spondyloarthritis (axSpA). METHODS: We retrospectively analyzed datasets from four centers (A-D), focusing on patients with chronic low back pain. A subset from center A was used for prospective validation. A deep learning (DL) model based on ResNet50 was constructed using sacroiliac joint MRI. Clinical variables were integrated with DL scores in ML algorithms to distinguish axSpA from non-axSpA patients. Model performance was assessed by the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy. RESULTS: The study included 1294 patients (median age 31 years [interquartile range 24-42]; 35.5% females). Clinical risk factors identified were age, sex, and human leukocyte antigen-B27 status. The MRI-based DL model demonstrated an AUC of 0.837, 0.636, 0.724, 0.710, and 0.812 on the internal test set, three external test sets, and the prospective validation set, respectively. The combined model, particularly the K-nearest-neighbors-11 algorithm, demonstrated superior performance across multiple test sets with AUCs ranging from 0.853 to 0.912. It surpassed the Assessment of SpondyloArthritis International Society criteria with better AUC (0.858 vs. 0.650, p < 0.001), sensitivity (87.8% vs. 42.4%, p < 0.001), and accuracy (78.7% vs. 56.9%, p < 0.001). CONCLUSION: The ML method integrating MRI and clinical risk factors effectively identified axSpA, representing a promising tool for the diagnosis and management of axSpA. CLINICAL RELEVANCE STATEMENT: The machine learning model combining MRI and clinical risk factors potentially enables earlier diagnosis and intervention for axial spondyloarthritis patients, reducing the delays commonly associated with traditional diagnostic approaches. KEY POINTS: Axial spondyloarthritis (AxSpA) lacks definitive diagnostic criteria or markers, leading to diagnostic delay. MRI-based deep learning provided quantitative analysis of sacroiliac joint changes indicative of axSpA. A machine learning model combining sacroiliac joint MRI and clinical risk factors enhanced axSpA identification.

摘要

目的:开发一种基于机器学习(ML)的模型,利用磁共振成像(MRI)和临床风险因素提高轴向型脊柱关节炎(axSpA)的诊断准确性。 方法:我们回顾性分析了来自四个中心(A - D)的数据集,重点关注慢性下腰痛患者。中心A的一个子集用于前瞻性验证。使用骶髂关节MRI构建基于ResNet50的深度学习(DL)模型。将临床变量与DL评分整合到ML算法中,以区分axSpA患者和非axSpA患者。通过受试者操作特征曲线(AUC)下的面积、敏感性、特异性和准确性评估模型性能。 结果:该研究纳入了1294例患者(中位年龄31岁[四分位间距24 - 42];35.5%为女性)。确定的临床风险因素为年龄、性别和人类白细胞抗原B27状态。基于MRI的DL模型在内部测试集、三个外部测试集和前瞻性验证集上的AUC分别为0.837、0.636、0.724、0.710和0.812。联合模型,特别是K近邻 - 11算法,在多个测试集上表现出卓越性能,AUC范围为0.853至0.912。它在AUC(0.858对0.650,p < 0.001)、敏感性(87.8%对42.4%,p < 0.001)和准确性(78.7%对56.9%,p < 0.001)方面超过了国际脊柱关节炎评估协会标准。 结论:整合MRI和临床风险因素的ML方法有效识别了axSpA,是一种用于axSpA诊断和管理的有前景的工具。 临床相关性声明:结合MRI和临床风险因素的机器学习模型可能使轴向型脊柱关节炎患者能够更早地诊断和干预,减少与传统诊断方法通常相关的延误。 关键点:轴向型脊柱关节炎(AxSpA)缺乏明确的诊断标准或标志物,导致诊断延迟。基于MRI的深度学习对指示axSpA的骶髂关节变化进行了定量分析。结合骶髂关节MRI和临床风险因素的机器学习模型提高了axSpA的识别能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e1/12031678/bbce69f9bdaf/13244_2025_1967_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e1/12031678/0082808bfed1/13244_2025_1967_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e1/12031678/72f91403e283/13244_2025_1967_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e1/12031678/7faa85061b32/13244_2025_1967_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e1/12031678/2b0ef40fc984/13244_2025_1967_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e1/12031678/78994ac2f444/13244_2025_1967_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e1/12031678/bbce69f9bdaf/13244_2025_1967_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e1/12031678/0082808bfed1/13244_2025_1967_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e1/12031678/72f91403e283/13244_2025_1967_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e1/12031678/7faa85061b32/13244_2025_1967_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e1/12031678/2b0ef40fc984/13244_2025_1967_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e1/12031678/78994ac2f444/13244_2025_1967_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e1/12031678/bbce69f9bdaf/13244_2025_1967_Fig6_HTML.jpg

相似文献

[1]
Enhanced diagnosis of axial spondyloarthritis using machine learning with sacroiliac joint MRI: a multicenter study.

Insights Imaging. 2025-4-25

[2]
Automatic segmentation of fat metaplasia on sacroiliac joint MRI using deep learning.

Insights Imaging. 2024-3-26

[3]
Deep Learning Detects Changes Indicative of Axial Spondyloarthritis at MRI of Sacroiliac Joints.

Radiology. 2022-12

[4]
Identification of a machine learning-based diagnostic model for axial spondyloarthritis in rheumatological routine care using a random forest approach.

RMD Open. 2024-11-27

[5]
Artificial intelligence improves the diagnosis of human leukocyte antigen (HLA)-B27-negative axial spondyloarthritis based on multi-sequence magnetic resonance imaging and clinical features.

Quant Imaging Med Surg. 2024-8-1

[6]
Quantification of bone marrow edema by MRI of the sacroiliac joints in patients diagnosed with axial spondyloarthritis: results from the ESPeranza cohort.

Scand J Rheumatol. 2022-9

[7]
MRI contributes to accurate and early diagnosis of non-radiographic HLA-B27 negative axial spondyloarthritis.

J Transl Med. 2021-7-9

[8]
The TabNet Model for Diagnosing Axial Spondyloarthritis Using MRI Imaging Findings and Clinical Risk Factors.

Int J Rheum Dis. 2024-12

[9]
Use of MRI-based deep learning radiomics to diagnose sacroiliitis related to axial spondyloarthritis.

Eur J Radiol. 2024-3

[10]
Performance analysis of a deep-learning algorithm to detect the presence of inflammation in MRI of sacroiliac joints in patients with axial spondyloarthritis.

Ann Rheum Dis. 2025-1

本文引用的文献

[1]
ASAS consensus definition of early axial spondyloarthritis.

Ann Rheum Dis. 2024-8-27

[2]
Human Leukocyte Antigen B27-Negative Axial Spondyloarthritis: What Do We Know?

ACR Open Rheumatol. 2023-7

[3]
A deep learning model for the diagnosis of sacroiliitis according to Assessment of SpondyloArthritis International Society classification criteria with magnetic resonance imaging.

Diagn Interv Imaging. 2023

[4]
Towards precision medicine based on a continuous deep learning optimization and ensemble approach.

NPJ Digit Med. 2023-2-3

[5]
Deep Learning Detects Changes Indicative of Axial Spondyloarthritis at MRI of Sacroiliac Joints.

Radiology. 2022-12

[6]
Sacroiliac Bone Marrow Edema: Innocent Until Proven Guilty?

Arthritis Rheumatol. 2022-9

[7]
Advanced neural networks for classification of MRI in psoriatic arthritis, seronegative, and seropositive rheumatoid arthritis.

Rheumatology (Oxford). 2022-11-28

[8]
Deep learning algorithms for magnetic resonance imaging of inflammatory sacroiliitis in axial spondyloarthritis.

Rheumatology (Oxford). 2022-10-6

[9]
An introduction to machine learning and analysis of its use in rheumatic diseases.

Nat Rev Rheumatol. 2021-12

[10]
Age at onset in axial spondyloarthritis around the world: data from the Assessment in SpondyloArthritis international Society Peripheral Involvement in Spondyloarthritis study.

Rheumatology (Oxford). 2022-4-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索