Zhang Junjun, Ma Zengyang, Zhang Yitian, Liu Xinxing, Li Ruiming, Lin Qianqian, Fang Guojia, Zheng Xue, Li Weimin, Yang Chunlei, Li Jianmin, Gong Junbo, Xiao Xudong
School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China.
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Nat Commun. 2024 Nov 28;15(1):10365. doi: 10.1038/s41467-024-54818-6.
Although an ideal bandgap matching with 0.96 eV and 1.62 eV for a double-junction tandem is hard to realize practically, among all mature photovoltaic systems, Cu(In,Ga)Se (CIGSe) can provide the closest bandgap of 1.00 eV for the bottom sub-cell by adjusting its composition. However, pure CuInSe (CISe) solar cell suffers strong interfacial carrier recombination. We hereby present approaches to introduce appropriate Ga gradients in both the back and front parts of absorber while maintaining the absorption spectrum close to CISe. With an appropriate front Ga gradient, the open circuit voltage can be enhanced by ~30 mV. With a pre-deposited CIGSe layer and a high copper excess deposition during absorber growth, the Ga diffusion can be well suppressed and a wide U-shaped Ga grading with a minimum bandgap of 1.01 eV has been created. Our optimized narrow-bandgap CIGSe solar cell has achieved a certified record PCE of 20.26%, with a record-low open circuit voltage deficit of 368 mV and a record-high contribution of 10% absolute efficiency to a four-terminal tandem. This work demonstrates the potential of controlling gallium diffusion to improve the performance of narrow bandgap CIGSe solar cells for tandem applications.
虽然对于双结串联电池来说,实现0.96 eV和1.62 eV的理想带隙匹配在实际中很难做到,但在所有成熟的光伏系统中,通过调整其成分,铜铟镓硒(CIGSe)可为底部子电池提供最接近1.00 eV的带隙。然而,纯铜铟硒(CISe)太阳能电池存在强烈的界面载流子复合。在此,我们提出在吸收层的前后部分引入适当的镓梯度的方法,同时保持吸收光谱接近CISe。通过适当的前部镓梯度,开路电压可提高约30 mV。通过预沉积CIGSe层以及在吸收层生长过程中进行高铜过量沉积,可以很好地抑制镓的扩散,并形成了一个最小带隙为1.01 eV的宽U形镓梯度。我们优化后的窄带隙CIGSe太阳能电池实现了20.26%的认证记录光电转换效率,开路电压损失低至368 mV,对四端串联电池的绝对效率贡献高达10%,创历史新高。这项工作展示了控制镓扩散以提高用于串联应用的窄带隙CIGSe太阳能电池性能的潜力。