Suppr超能文献

COVID-AMD 数据库:用于冠状病毒感染动物模型的比较分析工具。

COVID-AMD database for coronavirus-infected animal models with comparative analysis tools.

机构信息

Institute of Laboratory Animal Sciences, CAMS & PUMC, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, 100021, China.

Nutshell Therapeutics (Shanghai) Co., Ltd, 201210, Shanghai, China.

出版信息

Sci Rep. 2024 Nov 28;14(1):29567. doi: 10.1038/s41598-024-80474-3.

Abstract

Respiratory infections caused by coronaviruses have posed serious and unpredictably public health threats; reliable animal models continue to be essential for advancing our understanding of the virus's transmission, pathophysiology, and immunological mechanisms. In response to the critical need for centralized resources in coronavirus research, the COVID-AMD database (Coronavirus Disease Animal Model Database, https://www.uc-med.net/CoV-AMD ) has been developed as an integrated platform. Data was gathered from public literature databases, refined and integrated using ETL (Extract, Transform, Load) methodology. After data conversion and cleaning, COVID-AMD was implemented using MySQL relational database with jQuery and JBoss. COVID-AMD database consolidates comprehensive data on animal models infected with various CoVs, including MERS-CoV, SARS-CoV, and SARS-CoV-2, featuring methodologies for establishing infection models, clinical features, and phenotypic data. It catalogs 869 animal models across 29 species and 312 virus strains, covering five diseases and ten infection routes. With global and advanced search capabilities, it facilitated data preprocessing, integration, analysis, and visualization, and provided tools for comparative analysis, model recommendation and omics analysis based on model and phenotype data. The open access to this rich repository aims to enable rapid identification of animal models for CoVs, thereby accelerating the development and clinical trial progression of prospective therapeutics and vaccines.

摘要

冠状病毒引起的呼吸道感染对公共卫生造成了严重且难以预测的威胁;可靠的动物模型对于深入了解病毒的传播、病理生理学和免疫机制仍然至关重要。为了满足冠状病毒研究中集中资源的迫切需求,开发了 COVID-AMD 数据库(冠状病毒疾病动物模型数据库,https://www.uc-med.net/CoV-AMD),作为一个集成平台。数据来自公共文献数据库,使用 ETL(提取、转换、加载)方法进行精炼和整合。在数据转换和清理后,使用 MySQL 关系数据库、jQuery 和 JBoss 实现了 COVID-AMD。COVID-AMD 数据库整合了各种 CoV(包括 MERS-CoV、SARS-CoV 和 SARS-CoV-2)感染动物模型的综合数据,包括感染模型建立方法、临床特征和表型数据。它列出了 29 个物种和 312 个病毒株的 869 个动物模型,涵盖了五种疾病和十种感染途径。具有全球和高级搜索功能,便于数据预处理、整合、分析和可视化,并提供基于模型和表型数据的比较分析、模型推荐和组学分析工具。这个丰富资源库的开放访问旨在帮助快速识别 CoV 的动物模型,从而加速潜在治疗药物和疫苗的开发和临床试验进程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a28/11605124/1d83bf520b1f/41598_2024_80474_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验