Hu Liming, Cao Wenbing, Jiang Yihaofan, Cai Wenkang, Lou Xiaoding, Liu Tao
State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Nat Chem. 2024 Dec;16(12):1960-1971. doi: 10.1038/s41557-024-01675-x. Epub 2024 Nov 28.
Fluorescent proteins are indispensable tools in biological and medical research. The fluorophores are typically encoded by the primary amino acid sequence, from which a fluorescent molecular rotor structure forms upon protein folding. Here, inspired by the fluorogenic property exhibited by native fluorophores, we designed a collection of fluorogenic non-canonical amino acids that feature this molecular rotor structure-termed fluorescent molecular rotor amino acids (FMR-AAs)-akin to native fluorescent protein fluorophores. By incorporating FMR-AAs into target proteins through an expanded genetic code, we use them as encoded fluorophore analogues within a confined protein microenvironment, thus readily transforming diverse non-fluorescent proteins into artificial fluorescent proteins. We also use FMR-AAs in selected proteins as sensitive fluorescent probes for monitoring protein-protein interactions and detecting protein conformational changes in vitro and in living cells. This approach enables the generation of artificial fluorescent proteins and the development of biosensors from potentially any protein of interest with minor modifications.
荧光蛋白是生物和医学研究中不可或缺的工具。荧光团通常由一级氨基酸序列编码,蛋白质折叠时会形成荧光分子转子结构。在此,受天然荧光团所表现出的荧光特性启发,我们设计了一系列具有这种分子转子结构的荧光非天然氨基酸——称为荧光分子转子氨基酸(FMR-AAs),类似于天然荧光蛋白荧光团。通过扩展遗传密码将FMR-AAs掺入目标蛋白质中,我们将它们用作受限蛋白质微环境中的编码荧光团类似物,从而轻松地将各种非荧光蛋白转化为人工荧光蛋白。我们还在选定的蛋白质中使用FMR-AAs作为灵敏的荧光探针,用于监测蛋白质-蛋白质相互作用以及在体外和活细胞中检测蛋白质构象变化。这种方法能够通过微小修饰从几乎任何感兴趣的蛋白质生成人工荧光蛋白并开发生物传感器。