Suppr超能文献

使用 TMLE 方法估计泰格尔伯格医院 ICU 中危重症 COVID-19 患者使用地塞米松与氢化可的松对中性粒细胞-淋巴细胞比值的因果效应。

Estimating the causal effect of dexamethasone versus hydrocortisone on the neutrophil- lymphocyte ratio in critically ill COVID-19 patients from Tygerberg Hospital ICU using TMLE method.

机构信息

Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University, 3rd Floor, Education Building, Francie Van Zijl Drive, Parow, Cape Town, 7500, South Africa.

Biostatistics Research Group (BRG), Mikro Park, Kuilsriver, Cape Town, South Africa.

出版信息

BMC Infect Dis. 2024 Nov 29;24(1):1365. doi: 10.1186/s12879-024-10112-w.

Abstract

BACKGROUND

Causal inference from observational studies is an area of interest to researchers, advancing rapidly over the years and with it, the methods for causal effect estimation. Among them, Targeted Maximum Likelihood estimation (TMLE) possesses arguably the most outstanding statistical properties, and with no outright treatment for COVID-19, there was an opportunity to estimate the causal effect of dexamethasone versus hydrocortisone upon the neutrophil-lymphocyte ratio (NLR), a vital indicator for disease progression among critically ill COVID-19 patients.

METHODS

TMLE variations were used in the analysis. Super Learner (SL), Bayesian Additive Regression Trees (BART) and parametric regression (PAR) were implemented to estimate the average treatment effect (ATE).

RESULTS

The study had 168 participants, 128 on dexamethasone and 40 on hydrocortisone. The mean causal difference in NLR on day 5; ATE [95% CI]: from SL-TMLE was - 0.309 [-3.800, 3.182] BART-TMLE 0.246 [-3.399, 3.891] and PAR-TMLE 1.245 [-1.882, 4372]. The ATE of dexamethasone versus hydrocortisone on NLR was not statistically significant since the confidence interval included zero.

CONCLUSION

The effect of dexamethasone is not significantly different from that of hydrocortisone on NLR in critically ill COVID-19 patients admitted to ICU. This implies that the difference in effect on NLR between the two drugs is due to random chance. TMLE remains an outstanding approach for causal analysis of observational studies with the ability to be augmented with multiple prediction approaches.

摘要

背景

从观察性研究中进行因果推断是研究人员感兴趣的一个领域,多年来一直在快速发展,因果效应估计方法也在不断发展。其中,靶向最大似然估计(TMLE)具有最突出的统计特性,由于目前还没有针对 COVID-19 的明确治疗方法,因此有机会估计地塞米松与氢化可的松对中性粒细胞与淋巴细胞比值(NLR)的因果效应,NLR 是危重症 COVID-19 患者疾病进展的重要指标。

方法

在分析中使用了 TMLE 的变化。超级学习者(SL)、贝叶斯加法回归树(BART)和参数回归(PAR)被用来估计平均治疗效果(ATE)。

结果

这项研究有 168 名参与者,其中 128 名接受地塞米松治疗,40 名接受氢化可的松治疗。第 5 天 NLR 的平均因果差异;ATE[95%CI]:来自 SL-TMLE 的为-0.309[-3.800, 3.182],BART-TMLE 为 0.246[-3.399, 3.891],PAR-TMLE 为 1.245[-1.882, 4372]。地塞米松与氢化可的松对 NLR 的 ATE 无统计学意义,因为置信区间包含零。

结论

地塞米松对 ICU 收治的危重症 COVID-19 患者的 NLR 没有显著影响。这意味着两种药物对 NLR 的影响差异是由于随机机会造成的。TMLE 仍然是一种出色的观察性研究因果分析方法,它可以与多种预测方法相结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/673e/11606140/e40f205fa8cb/12879_2024_10112_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验