Department of Biology, Saint Michael's College, Colchester, Vermont, USA.
Department of Pathology and Laboratory Medicine, Robert Larner, MD College of Medicine at the University of Vermont, University of Vermont Medical Center, Burlington, Vermont, USA.
J Comp Neurol. 2024 Nov;532(11):e70000. doi: 10.1002/cne.70000.
One of the most important goals in biomedical sciences is understanding the causal mechanisms of neurodegeneration. A prevalent hypothesis relates to impaired waste clearance mechanisms from the brain due to reported waste aggregation in the brains of Alzheimer patients, including amyloid-β plaques and neurofibrillary tau tangles. Currently, our understanding of the mechanisms by which waste is removed from the brain is only fragmentary. Here we provide compelling evidence that waste clearance from brain tissue is highly conserved in arachnids and humans. Utilizing RNAscope in situ hybridization, immunohistochemical, ultrastructural, and histological approaches, we demonstrate that cellular debris in spider neurons is engulfed by myelin-forming ependymal glial cells that transect into neuronal somata and form myelin-derived waste-internalizing receptacles. These canal systems channel this debris into the lymphatic system likely in an aquaporin-4 (AQP4) water channel-dependent manner. We provide robust evidence that a similar process may be true in human hippocampus where vast numbers of myelinated AQP4-immunoreactive ependymal glial cells send cellular projections into the somata of neurons and glial cells where they differentiate into waste internalizing receptacles. In the brains of Alzheimer decedents, hypertrophic impairment of these myelinated glial cells leads to the catastrophic obstruction and depletion of neuronal cytoplasm into the ependymal glial cells. At the cellular level, the structural impairment of macroglia leads to swelling myelin protrusions that appear as electron-lucent circular profiles, explaining spongiform abnormalities associated with the neurodegenerative diseases described here. We propose to term this novel type of macroglia-mediated cell death "gliaptosis."
生物医学科学的最重要目标之一是理解神经退行性变的因果机制。一个流行的假说与由于阿尔茨海默病患者大脑中报告的废物聚集引起的脑内废物清除机制受损有关,包括淀粉样β斑块和神经原纤维缠结。目前,我们对从大脑中清除废物的机制的理解只是零碎的。在这里,我们提供了令人信服的证据,表明蛛形纲动物和人类的脑组织废物清除具有高度保守性。利用 RNAscope 原位杂交、免疫组织化学、超微结构和组织学方法,我们证明了蜘蛛神经元中的细胞碎片被形成髓鞘的室管膜神经胶质细胞吞噬,这些细胞穿过神经元胞体并形成由髓鞘衍生的废物内吞受体。这些管道系统可能以水通道蛋白-4(AQP4)依赖性的方式将这些碎片引导到淋巴系统中。我们提供了强有力的证据表明,在人类海马体中可能存在类似的过程,大量的有髓鞘 AQP4 免疫反应性室管膜神经胶质细胞将细胞突起发送到神经元和神经胶质细胞的胞体中,并在那里分化为废物内吞受体。在阿尔茨海默病死者的大脑中,这些有髓鞘的神经胶质细胞的肥大损伤导致灾难性的阻塞和神经元细胞质向室管膜神经胶质细胞的耗竭。在细胞水平上,大胶质细胞的结构损伤导致髓鞘突起肿胀,表现为电子透明的圆形轮廓,解释了与这里描述的神经退行性疾病相关的海绵状异常。我们提议将这种新型的巨胶质细胞介导的细胞死亡称为“gliaptosis”。