Youn Hye-Young, Choi Tae-Yang, Shim Junoh, Park Se Young, Kwon Min-Ki, Kim Sunkook, Kim Han-Ki
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
Department of Photonic Engineering, Chosun University, Gwangju, 61452, Republic of Korea.
Adv Mater. 2025 Feb;37(8):e2414800. doi: 10.1002/adma.202414800. Epub 2024 Nov 28.
2D transition-metal dichalcogenides are emerging as key materials for next-generation semiconductor technologies owing to their tunable bandgaps, high carrier mobilities, and exceptional surface-to-volume ratios. Among them, molybdenum disulfide (MoS) has garnered significant attention. However, scalable wafer-level deposition methods that enable uniform layer-controlled synthesis remain a critical challenge. In this paper, a novel fabrication approach-isolated plasma soft deposition (IPSD) followed by sulfurization-for the scalable production of 2D MoS with precise layer control is introduced. The IPSD system employs a scanning-based deposition method combined with plasma surface pretreatment, achieving large-area, high-quality 2D MoS layers. Comprehensive characterizations using Raman, UV-vis, and photoluminescence spectroscopy, and transmission electron microscopy confirmed the successful synthesis of crystalline mono- to tetralayer 2D MoS on 6-inch SiO/Si substrates. Furthermore, respiration sensors fabricated using the IPSD-grown 2D MoS layers demonstrated fast response times (≈1 s) and high response to relative humidity levels between 30% and 60%. This study offers significant advancements in the scalable synthesis of 2D MoS and opens new avenues for its application in advanced sensing and electronic devices.
二维过渡金属二硫属化物因其可调节的带隙、高载流子迁移率和出色的表面体积比,正成为下一代半导体技术的关键材料。其中,二硫化钼(MoS)备受关注。然而,能够实现均匀层控合成的可扩展晶圆级沉积方法仍然是一项严峻挑战。本文介绍了一种新颖的制造方法——隔离等离子体软沉积(IPSD),随后进行硫化处理,用于精确控制层数的二维MoS的可扩展生产。IPSD系统采用基于扫描的沉积方法并结合等离子体表面预处理,可实现大面积、高质量的二维MoS层。使用拉曼光谱、紫外可见光谱、光致发光光谱以及透射电子显微镜进行的全面表征证实,在6英寸SiO/Si衬底上成功合成了结晶态的单层至四层二维MoS。此外,使用IPSD生长的二维MoS层制造的呼吸传感器显示出快速响应时间(约1秒),并且对30%至60%的相对湿度水平具有高响应性。这项研究在二维MoS的可扩展合成方面取得了重大进展,并为其在先进传感和电子器件中的应用开辟了新途径。