Suppr超能文献

通过隔离等离子体软沉积生长的用于可穿戴和柔性温度传感器的高性能柔性二维碲半导体

High-Performance Flexible 2D Tellurium Semiconductor Grown by Isolated Plasma Soft Deposition for Wearable and Flexible Temperature Sensors.

作者信息

Choi Tae-Yang, Kang Jun-Hyeok, Jang Jong-Hyun, Kim Han-Ki

机构信息

School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

出版信息

Small Methods. 2025 Aug;9(8):e2500379. doi: 10.1002/smtd.202500379. Epub 2025 Jun 29.

Abstract

High-quality flexible 2D tellurium (Te) semiconductors on a six-inch Si wafer and polyethylene terephthalate substrate using the isolated plasma soft deposition (IPSD) technique are successfully fabricated. Unlike conventional sputtering systems, the IPSD process minimizes direct plasma irradiation and plasma damage, thereby preserving the unique helical chain structure of the 2D Te layer. The integration of oxygen plasma treatment and in situ substrate heating significantly enhanced both the adhesion and crystallinity of the 2D Te layer. The optimized 2D Te layer exhibited exceptional properties, including a high carrier mobility of 103 cm V s, a smooth surface roughness of 0.778 nm, and a critical bending radius of 12 mm. When integrated into temperature sensors, the 2D Te/PET demonstrated high sensitivity, exhibiting a negative temperature coefficient response across the 20-40 °C range. Moreover, the IPSD-grown 2D Te layer demonstrated outstanding mechanical flexibility, with minimal resistance changes (<4%) during both bending and rolling tests. Long-term stability assessments conducted over 100 days revealed resistance variations of less than 1%, highlighting the material's robust reliability. These findings position the IPSD process as a promising physical vapor deposition technique for scalable fabrication of large-area 2D Te layers, enabling their integration into wearable and flexible electronic devices.

摘要

利用隔离等离子体软沉积(IPSD)技术,成功地在六英寸硅晶圆和聚对苯二甲酸乙二酯衬底上制备出了高质量的柔性二维碲(Te)半导体。与传统溅射系统不同,IPSD工艺将直接等离子体辐照和等离子体损伤降至最低,从而保留了二维碲层独特的螺旋链结构。氧等离子体处理和原位衬底加热的结合显著提高了二维碲层的附着力和结晶度。优化后的二维碲层表现出优异的性能,包括103 cm V s的高载流子迁移率、0.778 nm的光滑表面粗糙度以及12 mm的临界弯曲半径。当集成到温度传感器中时,二维碲/聚对苯二甲酸乙二酯表现出高灵敏度,在20 - 40°C范围内呈现负温度系数响应。此外,通过IPSD生长的二维碲层表现出出色的机械柔韧性,在弯曲和滚动测试过程中的电阻变化最小(<4%)。在100天内进行的长期稳定性评估显示电阻变化小于1%,突出了该材料强大的可靠性。这些发现表明,IPSD工艺是一种有前景的物理气相沉积技术,可用于大面积二维碲层的可扩展制造,使其能够集成到可穿戴和柔性电子设备中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24b3/12391622/593a06679789/SMTD-9-2500379-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验