Senol Gungor Ayca, von Mentlen Jean-Marc, Ruthes Jean G A, García-Soriano Francisco J, Drvarič Talian Sara, Presser Volker, Porcar Lionel, Vizintin Alen, Wood Vanessa, Prehal Christian
Department of Information Technology and Electrical Engineering, ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland.
INM─Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
ACS Appl Mater Interfaces. 2024 Dec 11;16(49):67651-67661. doi: 10.1021/acsami.4c13183. Epub 2024 Nov 29.
Li-S batteries with an improved cycle life of over 1000 cycles have been achieved using cathodes of sulfur-infiltrated nanoporous carbon with carbonate-based electrolytes. In these cells, a protective cathode-electrolyte interphase (CEI) is formed, leading to solid-state conversion of S to LiS in the nanopores. This prevents the dissolution of polysulfides and slows capacity fade. However, there is currently little understanding of what limits the capacity and rate performance of these Li-S batteries. Here, we aim to deepen our understanding of the capacity and rate limitation using a variety of structure-sensitive and electrochemical techniques, such as small-angle neutron scattering (SANS), X-ray diffraction (XRD), electrochemical impedance spectroscopy, and galvanostatic charge/discharge. SANS and XRD data give direct evidence of CEI formation and solid-state sulfur conversion occurring inside the nanopores. Electrochemical measurements using two nanoporous carbons with different pore sizes suggest that charge transfer at the active material interfaces and the specific CEI/active material structure in the nanopores play the dominant role in defining capacity and rate performance. This work helps define strategies to increase the sulfur loading while maximizing sulfur usage, rate performance, and cycle life.
通过使用硫浸渍的纳米多孔碳阴极和碳酸盐基电解质,已实现循环寿命超过1000次的锂硫电池。在这些电池中,形成了保护性的阴极-电解质界面(CEI),导致纳米孔中硫固态转化为硫化锂。这防止了多硫化物的溶解并减缓了容量衰减。然而,目前对于限制这些锂硫电池容量和倍率性能的因素了解甚少。在此,我们旨在使用各种结构敏感和电化学技术,如小角中子散射(SANS)、X射线衍射(XRD)、电化学阻抗谱和恒电流充/放电,来加深对容量和倍率限制的理解。SANS和XRD数据直接证明了纳米孔内CEI的形成和固态硫转化。使用两种不同孔径的纳米多孔碳进行的电化学测量表明,活性材料界面处的电荷转移以及纳米孔中特定的CEI/活性材料结构在定义容量和倍率性能方面起主导作用。这项工作有助于确定在增加硫负载量的同时最大化硫利用率、倍率性能和循环寿命的策略。