Suppr超能文献

通过低温透射电子显微镜和机器学习辅助的原位中子散射揭示锂硫电池中的多相转换途径

Unraveling Multiphase Conversion Pathways in Lithium-Sulfur Batteries through Cryo Transmission Electron Microscopy and Machine Learning-Assisted Operando Neutron Scattering.

作者信息

von Mentlen Jean-Marc, Güngör Ayça Senol, Demuth Thomas, Belz Jürgen, Plodinec Milivoj, Dutta Pronoy, Vizintin Alen, Porcar Lionel, Volz Kerstin, Wood Vanessa, Prehal Christian

机构信息

Department of Information Technology and Electrical Engineering, ETH Zürich, Gloriastrasse 35, Zürich 8092, Switzerland.

Materials Science Center and Faculty of Physics, Philipps University Marburg, Hans-Meerweinstraße 6, Marburg 35043, Germany.

出版信息

ACS Nano. 2025 May 6;19(17):16626-16638. doi: 10.1021/acsnano.5c00536. Epub 2025 Apr 24.

Abstract

Understanding the complex physicochemical processes in conversion-type batteries requires investigations across multiple length scales. Here, we present a methodological approach to examine Li-S batteries on the nanoscale by combining cryogenic transmission electron microscopy (cryoTEM) with operando small-angle neutron scattering (SANS). CryoTEM revealed discharge products with a biphasic structure consisting of nanocrystalline LiS within an amorphous LiS matrix. Data analysis of complementary operando SANS measurements was accelerated by a convolutional neural network trained to predict scattering curves based on plurigaussian random fields, enabling comprehensive parameter space exploration for model fitting. Our findings are in line with disproportionation-driven deposition of LiS particles that agglomerate and partially reduce to LiS via solid-state conversion. This challenges the conventional view of direct, stepwise electroreduction of polysulfides at the electrode-electrolyte interface. Overall, our multitechnique approach demonstrates the value of combining localized high-resolution imaging with time-resolved operando scattering measurements to understand complex electrochemical conversion pathways in next-generation energy storage systems.

摘要

了解转换型电池中复杂的物理化学过程需要在多个长度尺度上进行研究。在此,我们提出一种方法,通过将低温透射电子显微镜(cryoTEM)与原位小角中子散射(SANS)相结合,在纳米尺度上研究锂硫电池。低温透射电子显微镜揭示了具有双相结构的放电产物,其由非晶态LiS基质中的纳米晶LiS组成。通过基于多高斯随机场训练以预测散射曲线的卷积神经网络,加速了互补原位SANS测量的数据分析,从而能够对模型拟合进行全面的参数空间探索。我们的发现与通过固态转化团聚并部分还原为LiS的LiS颗粒的歧化驱动沉积一致。这挑战了在电极 - 电解质界面处多硫化物直接、逐步电还原的传统观点。总体而言,我们的多技术方法证明了将局部高分辨率成像与时间分辨原位散射测量相结合以理解下一代储能系统中复杂电化学转化途径的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eee/12060645/33a6b540c950/nn5c00536_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验