Suppr超能文献

SkyMap:用于图神经网络基准测试的生成式图模型。

SkyMap: a generative graph model for GNN benchmarking.

作者信息

Wassington Axel, Higueras Raúl, Abadal Sergi

机构信息

Department of Computer Architecture, Universitat Politècnica de Catalunya, Barcelona, Spain.

出版信息

Front Artif Intell. 2024 Nov 14;7:1427534. doi: 10.3389/frai.2024.1427534. eCollection 2024.

Abstract

Graph Neural Networks (GNNs) have gained considerable attention in recent years. Despite the surge in innovative GNN architecture designs, research heavily relies on the same 5-10 benchmark datasets for validation. To address this limitation, several generative graph models like ALBTER or GenCAT have emerged, aiming to fix this problem with synthetic graph datasets. However, these models often struggle to mirror the GNN performance of the original graphs. In this work, we present SkyMap, a generative model for labeled attributed graphs with a fine-grained control over graph topology and feature distribution parameters. We show that our model is able to consistently replicate the learnability of graphs on graph convolutional, attention, and isomorphism networks better (64% lower Wasserstein distance) than ALBTER and GenCAT. Further, we prove that by randomly sampling the input parameters of SkyMap, graph dataset constellations can be created that cover a large parametric space, hence making a significant stride in crafting synthetic datasets tailored for GNN evaluation and benchmarking, as we illustrate through a performance comparison between a GNN and a multilayer perceptron.

摘要

近年来,图神经网络(GNN)受到了广泛关注。尽管创新的GNN架构设计激增,但研究仍严重依赖相同的5至10个基准数据集进行验证。为了解决这一局限性,一些生成式图模型如ALBTER或GenCAT应运而生,旨在通过合成图数据集解决这一问题。然而,这些模型往往难以反映原始图的GNN性能。在这项工作中,我们提出了SkyMap,这是一种用于带标签属性图的生成模型,能够对图拓扑和特征分布参数进行细粒度控制。我们表明,我们的模型能够比ALBTER和GenCAT更好地(瓦瑟斯坦距离低64%)在图卷积、注意力和同构网络上一致地复制图的可学习性。此外,我们证明,通过对SkyMap的输入参数进行随机采样,可以创建覆盖较大参数空间的图数据集星座,从而在为GNN评估和基准测试精心制作合成数据集方面取得重大进展,正如我们通过GNN和多层感知器之间的性能比较所说明的那样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6c6/11602517/f78d92927b67/frai-07-1427534-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验