Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, ON, Canada.
Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, ON, Canada.
Development. 2024 Dec 1;151(23). doi: 10.1242/dev.204455. Epub 2024 Nov 29.
This Review explores the rapidly evolving field of bioengineered vasculature, a key area of focus in tissue engineering and regenerative medicine. The broad relevance of this topic is attributed to its impacts on a wide range of biological processes, enabling studies in tissue development, fundamental biology and drug discovery, and the applications in tissue engineering and regenerative medicine. We outline the design criteria for bioengineered vasculature and the methodologies for constructing these systems by self-assembly and in microfluidics, organs-on-a-chip and macroscale tubular systems that often rely on biofabrication approaches such as 3D printing. We discuss existing challenges in developing functional vasculature that closely mirrors its native equivalent, including achieving hierarchical branching with organ and vessel-specific endothelial and supporting cells, providing perusable vasculature within organoids and scaling the systems for implantation and direct vascular anastomosis.
这篇综述探讨了生物工程血管这一快速发展的领域,这是组织工程和再生医学的重点关注领域之一。这个主题的广泛相关性归因于它对广泛的生物学过程的影响,使研究能够在组织发育、基础生物学和药物发现以及组织工程和再生医学中进行。我们概述了生物工程血管的设计标准和通过自组装和微流控技术构建这些系统的方法,包括器官芯片和宏观管状系统,这些系统通常依赖于生物制造方法,如 3D 打印。我们讨论了在开发功能血管方面的现有挑战,这些挑战与天然血管非常相似,包括实现具有器官和血管特异性内皮细胞和支持细胞的层次分支结构,在类器官中提供可穿透的血管,并为植入和直接血管吻合术对系统进行缩放。