Suppr超能文献

整合多组学和机器学习揭示了肺腺癌预后和治疗反应的吉非替尼耐药特征。

Integrated multi-omics and machine learning reveal a gefitinib resistance signature for prognosis and treatment response in lung adenocarcinoma.

作者信息

Zhou Dong, Zheng Zhi, Li Yanqi, Zhang Jiao, Lu Xiao, Zheng Hong, Dai Jigang

机构信息

Department of Thoracic Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.

出版信息

IUBMB Life. 2025 Jan;77(1):e2930. doi: 10.1002/iub.2930. Epub 2024 Nov 29.

Abstract

Gefitinib resistance (GR) presents a significant challenge in treating lung adenocarcinoma (LUAD), highlighting the need for alternative therapies. This study explores the genetic basis of GR to improve prediction, prevention, and treatment strategies. We utilized public databases to obtain GR gene sets, single-cell data, and transcriptome data, applying univariate and multivariate regression analyses alongside machine learning to identify key genes and develop a predictive signature. The signature's performance was evaluated using survival analysis and time-dependent ROC curves on internal and external datasets. Enrichment and tumor immune microenvironment analyses were conducted to understand the mechanistic roles of the signature genes in GR. Our analysis identified a robust 22-gene signature with strong predictive performance across validation datasets. This signature was significantly associated with chromosomal processes, DNA replication, immune cell infiltration, and various immune scores based on enrichment and tumor microenvironment analyses. Importantly, the signature also showed potential in predicting the efficacy of immunotherapy in LUAD patients. Moreover, we identified alternative agents to gefitinib that could offer improved therapeutic outcomes for high-risk and low-risk patient groups, thereby guiding treatment strategies for gefitinib-resistant patients. In conclusion, the 22-gene signature not only predicts prognosis and immunotherapy efficacy in gefitinib-resistant LUAD patients but also provides novel insights into non-immunotherapy treatment options.

摘要

吉非替尼耐药(GR)在治疗肺腺癌(LUAD)方面构成了重大挑战,凸显了对替代疗法的需求。本研究探索GR的遗传基础,以改进预测、预防和治疗策略。我们利用公共数据库获取GR基因集、单细胞数据和转录组数据,应用单变量和多变量回归分析以及机器学习来识别关键基因并开发一种预测特征。使用生存分析和时间依赖性ROC曲线在内部和外部数据集上评估该特征的性能。进行富集和肿瘤免疫微环境分析,以了解特征基因在GR中的机制作用。我们的分析确定了一个强大的22基因特征,在验证数据集中具有很强的预测性能。基于富集和肿瘤微环境分析,该特征与染色体过程、DNA复制、免疫细胞浸润以及各种免疫评分显著相关。重要的是,该特征在预测LUAD患者免疫治疗疗效方面也显示出潜力。此外,我们确定了可替代吉非替尼的药物,可为高风险和低风险患者群体提供更好的治疗结果,从而指导吉非替尼耐药患者的治疗策略。总之,这个22基因特征不仅能预测吉非替尼耐药LUAD患者的预后和免疫治疗疗效,还为非免疫治疗选择提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验