Suppr超能文献

一种用于生物力学和生物物理学有限元模拟中纳入取向分布函数的算法和软件框架。

An algorithmic and software framework to incorporate orientation distribution functions in finite element simulations for biomechanics and biophysics.

作者信息

Rauff Adam, Herron Michael R, Maas Steve A, Weiss Jeffrey A

机构信息

Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA.

Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA.

出版信息

Acta Biomater. 2025 Jan 15;192:151-164. doi: 10.1016/j.actbio.2024.11.043. Epub 2024 Nov 28.

Abstract

Biological tissues and biomaterials routinely feature a fibrous microstructure that contributes to physical and mechanical properties while influencing cellular guidance, organization and extracellular matrix (ECM) production. Specialized three-dimensional (3D) imaging techniques can visualize fibrillar structure and orientation, and previously we developed a nonparametric approach to extract orientation distribution functions (ODFs) directly from 3D image data [1]. In this work, we expanded our previous approach to provide a complete algorithmic and software framework to characterize inhomogeneous ODFs in image data and use ODFs to model the physics of materials with the finite element method. We characterized inhomogeneity using image subdomains and specialized interpolation methods, and we developed methods to incorporate ODFs directly into constitutive models. To facilitate its adoption by the biomechanics and biophysics communities, we developed a unified software framework in FEBio Studio (www.febio.org). This included new interpolation methods to spatially map the ODFs onto finite element meshes and an approach to downsample ODFs for efficient numerical calculations. The software provides the option to fit ODFs to parametric distributions, and scalar metrics provide means to assess goodness of fit. We evaluated the utility and accuracy of the algorithms and implementation using representative 3D image datasets. Our results demonstrated that utilizing the true measured ODFs provide a more accurate and spatially resolved representation of fiber ODFs and the resulting predicted mechanical response when compared with parametric approaches to approximating the true ODFs. This research provides a powerful, interactive software framework to extract and represent the inhomogeneous anisotropic characteristics of fibrous tissues directly from image data, and to incorporate them into biomechanics and biophysics simulations using the finite element method. STATEMENT OF SIGNIFICANCE: Biological tissues and biomaterials routinely feature a fibrous microstructure that contributes to physical and mechanical properties while influencing cellular guidance, organization and extracellular matrix (ECM) production. In this study, we developed a complete algorithmic and software framework to characterize inhomogeneous orientation distribution functions (ODFs) directly from biomedical image data and apply the ODFs to model the physics of biological materials. We characterized inhomogeneity using image subdomains and specialized interpolation methods, and we developed methods to incorporate ODFs directly into constitutive models. We developed a unified software framework in FEBio Studio (www.febio.org) to accommodate its adoption by the biomechanics and biophysics communities. The result is a powerful, interactive software framework to extract and represent inhomogeneous, anisotropic characteristics directly from image data, and incorporate them into biomechanics and biophysics simulations.

摘要

生物组织和生物材料通常具有纤维微观结构,这种结构有助于其物理和机械性能,同时影响细胞引导、组织和细胞外基质(ECM)的产生。专门的三维(3D)成像技术可以可视化纤维结构和取向,此前我们开发了一种非参数方法,可直接从3D图像数据中提取取向分布函数(ODF)[1]。在这项工作中,我们扩展了之前的方法,提供了一个完整的算法和软件框架,以表征图像数据中的非均匀ODF,并使用ODF通过有限元方法对材料的物理特性进行建模。我们使用图像子域和专门的插值方法来表征非均匀性,并开发了将ODF直接纳入本构模型的方法。为便于生物力学和生物物理学领域的人员采用,我们在FEBio Studio(www.febio.org)中开发了一个统一的软件框架。这包括用于将ODF在空间上映射到有限元网格的新插值方法,以及一种对ODF进行下采样以进行高效数值计算的方法。该软件提供了将ODF拟合到参数分布的选项,标量指标提供了评估拟合优度的手段。我们使用代表性的3D图像数据集评估了算法和实现的实用性和准确性。我们的结果表明,与近似真实ODF的参数方法相比,利用真实测量的ODF能更准确、更具空间分辨率地表示纤维ODF以及由此产生的预测力学响应。这项研究提供了一个强大的交互式软件框架,可直接从图像数据中提取和表示纤维组织的非均匀各向异性特征,并使用有限元方法将其纳入生物力学和生物物理学模拟中。

重要性声明

生物组织和生物材料通常具有纤维微观结构,这种结构有助于其物理和机械性能,同时影响细胞引导、组织和细胞外基质(ECM)的产生。在本研究中,我们开发了一个完整的算法和软件框架,以直接从生物医学图像数据中表征非均匀取向分布函数(ODF),并应用ODF对生物材料的物理特性进行建模。我们使用图像子域和专门的插值方法来表征非均匀性,并开发了将ODF直接纳入本构模型的方法。我们在FEBio Studio(www.febio.org)中开发了一个统一的软件框架,以方便生物力学和生物物理学领域的人员采用。结果是一个强大的交互式软件框架,可直接从图像数据中提取和表示非均匀、各向异性特征,并将其纳入生物力学和生物物理学模拟中。

相似文献

2
FEBio: finite elements for biomechanics.FEBio:生物力学有限元
J Biomech Eng. 2012 Jan;134(1):011005. doi: 10.1115/1.4005694.
3
A Plugin Framework for Extending the Simulation Capabilities of FEBio.FEBio 仿真功能扩展的插件框架。
Biophys J. 2018 Nov 6;115(9):1630-1637. doi: 10.1016/j.bpj.2018.09.016. Epub 2018 Sep 26.
5
FEBio: History and Advances.有限元生物力学软件(FEBio):历史与进展
Annu Rev Biomed Eng. 2017 Jun 21;19:279-299. doi: 10.1146/annurev-bioeng-071516-044738.
6
A systematic comparison between FEBio and PolyFEM for biomechanical systems.FEBio 和 PolyFEM 在生物力学系统中的系统比较。
Comput Methods Programs Biomed. 2024 Feb;244:107938. doi: 10.1016/j.cmpb.2023.107938. Epub 2023 Nov 29.

本文引用的文献

3
Matrix anisotropy promotes angiogenesis in a density-dependent manner.基质各向异性以密度依赖的方式促进血管生成。
Am J Physiol Heart Circ Physiol. 2022 May 1;322(5):H806-H818. doi: 10.1152/ajpheart.00072.2022. Epub 2022 Mar 25.
5
The local and global geometry of trabecular bone.小梁骨的局部和整体几何结构。
Acta Biomater. 2021 Aug;130:343-361. doi: 10.1016/j.actbio.2021.06.013. Epub 2021 Jun 12.
6
Stromal Cells Promote Neovascular Invasion Across Tissue Interfaces.基质细胞促进新血管跨越组织界面的侵袭。
Front Physiol. 2020 Aug 14;11:1026. doi: 10.3389/fphys.2020.01026. eCollection 2020.
8
FEBio: History and Advances.有限元生物力学软件(FEBio):历史与进展
Annu Rev Biomed Eng. 2017 Jun 21;19:279-299. doi: 10.1146/annurev-bioeng-071516-044738.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验