Department of Biomechanical Engineering, TU Delft, Mekelweg 2, Delft 2628CD, the Netherlands.
Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, Zurich 8093, Switzerland.
Acta Biomater. 2021 Aug;130:343-361. doi: 10.1016/j.actbio.2021.06.013. Epub 2021 Jun 12.
The organization and shape of the microstructural elements of trabecular bone govern its physical properties, are implicated in bone disease, and serve as blueprints for biomaterial design. To devise fundamental structure-property relationships and design truly bone-mimicking biomaterials, it is essential to characterize trabecular bone structure from the perspective of geometry, the mathematical study of shape. Using micro-CT images from 70 donors at five different sites, we analyze the local and global geometry of human trabecular bone in detail, respectively by quantifying surface curvatures and Minkowski functionals. We find that curvature density maps provide distinct and sensitive shape fingerprints for bone from different sites. Contrary to a common assumption, these curvature maps also show that bone morphology does not approximate a minimal surface but exhibits a much more intricate curvature landscape. At the global (or integral) perspective, our Minkowski analysis illustrates that trabecular bone exhibits other types of anisotropy/ellipticity beyond interfacial orientation, and that anisotropy varies substantially within the trabecular structure. Moreover, we show that the Minkowski functionals unify several traditional morphometric indices. Our geometric approach to trabecular morphometry provides a fundamental language of shape that could be useful for bone failure prediction, understanding geometry-driven tissue growth, and the design of bone-mimicking tissue scaffolds. STATEMENT OF SIGNIFICANCE: The architecture of trabecular bone is key in determining bone properties, and is often a starting point for the design of bone-substitutes. Despite the substantial history of bone morphometry, a fundamental characterization of trabecular bone geometry is still lacking. Therefore, we introduce a robust framework to quantify local and global trabecular bone geometry, which we apply to hundreds of micro-CT scans. Our approach relies on quantifying surface curvatures and Minkowski functionals, which are the most fundamental local and global shape quantifiers. Our results show that these shape metrics are sensitive to differences between bone types and unify traditional metrics within a single mathematical framework. This geometrical framework could also be useful to design bone-mimicking scaffolds and understand geometry-driven tissue growth.
骨小梁的微观结构元素的组织和形状控制着它的物理性质,与骨疾病有关,并为生物材料设计提供了蓝图。为了设计基本的结构-性能关系并设计真正模仿骨的生物材料,从几何形状的角度来描述骨小梁的结构是必不可少的,几何形状是形状的数学研究。我们使用来自五个不同部位的 70 个供体的微 CT 图像,分别通过量化表面曲率和 Minkowski 函数来详细分析人类骨小梁的局部和全局几何形状。我们发现曲率密度图为不同部位的骨提供了独特而敏感的形状指纹。与常见的假设相反,这些曲率图还表明,骨形态并不近似于最小曲面,而是表现出更为复杂的曲率景观。从全局(或整体)的角度来看,我们的 Minkowski 分析表明,骨小梁除了界面方向之外还表现出其他类型的各向异性/椭圆性,并且各向异性在骨小梁结构内有很大的变化。此外,我们表明 Minkowski 函数将几种传统形态计量指数统一起来。我们对骨小梁形态计量学的几何方法提供了一种基本的形状语言,对于骨失效预测、理解几何驱动的组织生长以及模仿骨的组织支架的设计可能会很有用。
骨小梁的结构是决定骨性能的关键因素,并且通常是设计骨替代品的起点。尽管有大量的骨形态计量学史,但骨小梁几何形状的基本特征仍然缺乏。因此,我们引入了一种强大的框架来量化局部和全局骨小梁几何形状,我们将其应用于数百个微 CT 扫描。我们的方法依赖于量化表面曲率和 Minkowski 函数,它们是最基本的局部和全局形状量化器。我们的结果表明,这些形状度量对骨类型之间的差异敏感,并在单个数学框架内统一了传统度量。这种几何框架也可能有助于设计模仿骨的支架和理解几何驱动的组织生长。