Suppr超能文献

潜在类别分析在医学诊断中的价值。

The value of latent class analysis in medical diagnosis.

作者信息

Rindskopf D, Rindskopf W

出版信息

Stat Med. 1986 Jan-Feb;5(1):21-7. doi: 10.1002/sim.4780050105.

Abstract

Assessment of the value of diagnostic indicators such as symptoms and laboratory tests results from calculation of the sensitivity and specificity of the indicators. Knowledge of the rate of occurrence of the disease allows for additional calculations of the error rates in using an indicator. These calculations are accurate only when the data on which they are based are reliable. If the diagnosis, which is used as the criterion for computing the sensitivity and specificity, is not accurate, then the resulting calculations will be in error. We show how a statistical method, latent class analysis, allows for the estimation of the characteristics of indicators even when an accurate diagnosis is unavailable. In addition, the method deals with several indicators at once, and provides a way to combine the information from all the indicators to make a diagnosis.

摘要

通过计算症状和实验室检查结果等诊断指标的敏感性和特异性来评估其价值。了解疾病的发生率有助于进一步计算使用某一指标时的错误率。只有当这些计算所依据的数据可靠时,这些计算才是准确的。如果用作计算敏感性和特异性的标准的诊断不准确,那么所得出的计算结果将会有误。我们展示了一种统计方法——潜在类别分析,即使在无法获得准确诊断的情况下,也能对指标的特征进行估计。此外,该方法可以同时处理多个指标,并提供一种将所有指标的信息结合起来进行诊断的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验