Suppr超能文献

在没有金标准的情况下,潜在类别模型何时会高估诊断及其他分类器的准确性?

When do latent class models overstate accuracy for diagnostic and other classifiers in the absence of a gold standard?

作者信息

Spencer Bruce D

机构信息

Department of Statistics and Institute of Policy Research, Northwestern University, Evanston Illinois 60208, USA.

出版信息

Biometrics. 2012 Jun;68(2):559-66. doi: 10.1111/j.1541-0420.2011.01694.x. Epub 2011 Oct 21.

Abstract

Latent class models are increasingly used to assess the accuracy of medical diagnostic tests and other classifications when no gold standard is available and the true state is unknown. When the latent class is treated as the true class, the latent class models provide measures of components of accuracy including specificity and sensitivity and their complements, type I and type II error rates. The error rates according to the latent class model differ from the true error rates, however, and empirical comparisons with a gold standard suggest the true error rates often are larger. We investigate conditions under which the true type I and type II error rates are larger than those provided by the latent class models. Results from Uebersax (1988, Psychological Bulletin 104, 405-416) are extended to accommodate random effects and covariates affecting the responses. The results are important for interpreting the results of latent class analyses. An error decomposition is presented that incorporates an error component from invalidity of the latent class model.

摘要

当没有金标准且真实状态未知时,潜在类别模型越来越多地用于评估医学诊断测试和其他分类的准确性。当将潜在类别视为真实类别时,潜在类别模型提供准确性组成部分的度量,包括特异性和敏感性及其互补指标,即I型和II型错误率。然而,根据潜在类别模型得出的错误率与真实错误率不同,并且与金标准的实证比较表明真实错误率通常更大。我们研究了真实I型和II型错误率大于潜在类别模型所提供错误率的条件。Uebersax(1988年,《心理通报》104卷,405 - 416页)的结果得到扩展,以适应影响反应的随机效应和协变量。这些结果对于解释潜在类别分析的结果很重要。本文提出了一种误差分解方法,该方法纳入了来自潜在类别模型无效性的误差成分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验