Wang Meng, Young Michael, Marshall Julian D, Piepmeier Logan, Bi Jianzhao, Kaufman Joel D, Szpiro Adam A
Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA; RENEW Institute, University at Buffalo, Buffalo, NY, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
Environ Pollut. 2025 Feb 1;366:125405. doi: 10.1016/j.envpol.2024.125405. Epub 2024 Nov 28.
Nationwide PM exposure models typically rely on regulatory monitoring data as the only ground-level measurements. In this study, we develop a high-resolution spatiotemporal PM model for the contiguous United States from 2000 to 2019 with dense monitoring data at both regulatory and residential sites. Specifically, we combine publicly-available data from 1843 regulatory monitors with our own set of multiple 2-week measurements at 939 residential locations. As we show, these additional data enhance the spatiotemporal prediction capabilities of the model. The model can handle varying data densities and regional variations; it predicts two-week average PM concentrations at fine spatial scale for the contiguous United States. Cross-validation performance indicates a spatial R of 0.93 and a root mean square error (RMSE) of 1.19 (μg/m), and a temporal R of 0.85 and RMSE of 2.05 (μg/m). Regional spatial R ranged from 0.80 (northwest) to 0.93 (northeast and central). Over time, the average PM across the United Stats decreased from 7.6 μg/m in 2000 to 4.7 μg/m in 2019. Our model effectively captured local PM gradients, highlighting its ability to address fine-scale variations related to local sources and roadways.
全国性的颗粒物(PM)暴露模型通常仅依赖监管监测数据作为唯一的地面测量数据。在本研究中,我们利用监管站点和居民区站点的密集监测数据,为2000年至2019年的美国本土开发了一个高分辨率的时空PM模型。具体而言,我们将来自1843个监管监测站的公开数据与我们自己在939个居民区进行的多组为期两周的测量数据相结合。正如我们所展示的,这些额外的数据增强了模型对时空的预测能力。该模型能够处理不同的数据密度和区域差异;它可以在美国本土的精细空间尺度上预测两周的平均PM浓度。交叉验证结果表明,空间相关系数R为0.93,均方根误差(RMSE)为1.19(μg/m),时间相关系数R为0.85,RMSE为2.05(μg/m)。区域空间相关系数R范围从0.80(西北部)到0.93(东北部和中部)。随着时间的推移,美国的平均PM浓度从2000年的7.6μg/m下降到2019年的4.7μg/m。我们的模型有效地捕捉到了当地的PM梯度,突出了其处理与当地污染源和道路相关的精细尺度变化的能力。