Suppr超能文献

在美国基于似然性的通用克里金框架下整合密集监测数据和土地利用回归的国家细颗粒物时空模型:2000 - 2019年

National PM spatiotemporal model integrating intensive monitoring data and land use regression in a likelihood-based universal kriging framework in the United States: 2000-2019.

作者信息

Wang Meng, Young Michael, Marshall Julian D, Piepmeier Logan, Bi Jianzhao, Kaufman Joel D, Szpiro Adam A

机构信息

Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA; RENEW Institute, University at Buffalo, Buffalo, NY, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.

Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.

出版信息

Environ Pollut. 2025 Feb 1;366:125405. doi: 10.1016/j.envpol.2024.125405. Epub 2024 Nov 28.

Abstract

Nationwide PM exposure models typically rely on regulatory monitoring data as the only ground-level measurements. In this study, we develop a high-resolution spatiotemporal PM model for the contiguous United States from 2000 to 2019 with dense monitoring data at both regulatory and residential sites. Specifically, we combine publicly-available data from 1843 regulatory monitors with our own set of multiple 2-week measurements at 939 residential locations. As we show, these additional data enhance the spatiotemporal prediction capabilities of the model. The model can handle varying data densities and regional variations; it predicts two-week average PM concentrations at fine spatial scale for the contiguous United States. Cross-validation performance indicates a spatial R of 0.93 and a root mean square error (RMSE) of 1.19 (μg/m), and a temporal R of 0.85 and RMSE of 2.05 (μg/m). Regional spatial R ranged from 0.80 (northwest) to 0.93 (northeast and central). Over time, the average PM across the United Stats decreased from 7.6 μg/m in 2000 to 4.7 μg/m in 2019. Our model effectively captured local PM gradients, highlighting its ability to address fine-scale variations related to local sources and roadways.

摘要

全国性的颗粒物(PM)暴露模型通常仅依赖监管监测数据作为唯一的地面测量数据。在本研究中,我们利用监管站点和居民区站点的密集监测数据,为2000年至2019年的美国本土开发了一个高分辨率的时空PM模型。具体而言,我们将来自1843个监管监测站的公开数据与我们自己在939个居民区进行的多组为期两周的测量数据相结合。正如我们所展示的,这些额外的数据增强了模型对时空的预测能力。该模型能够处理不同的数据密度和区域差异;它可以在美国本土的精细空间尺度上预测两周的平均PM浓度。交叉验证结果表明,空间相关系数R为0.93,均方根误差(RMSE)为1.19(μg/m),时间相关系数R为0.85,RMSE为2.05(μg/m)。区域空间相关系数R范围从0.80(西北部)到0.93(东北部和中部)。随着时间的推移,美国的平均PM浓度从2000年的7.6μg/m下降到2019年的4.7μg/m。我们的模型有效地捕捉到了当地的PM梯度,突出了其处理与当地污染源和道路相关的精细尺度变化的能力。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验