Suppr超能文献

土壤真菌在干旱期间保持活跃,并投资于储存化合物,而不受未来气候条件的影响。

Soil fungi remain active and invest in storage compounds during drought independent of future climate conditions.

机构信息

Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.

Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.

出版信息

Nat Commun. 2024 Nov 29;15(1):10410. doi: 10.1038/s41467-024-54537-y.

Abstract

Microbial growth is central to soil carbon cycling. However, how microbial communities grow under climate change is still largely unexplored. Here we use a unique field experiment simulating future climate conditions (increased atmospheric CO and temperature) and drought concomitantly and investigate impacts on soil microbial activity. We trace H or O applied via water-vapor exchange into membrane (and storage) fatty acids or DNA, respectively, to assess community- and group-level adjustments in soil microbial physiology (replication, storage product synthesis, and carbon use efficiency). We show that, while bacterial growth decreases by half during drought, fungal growth remains stable, demonstrating a remarkable resistance against soil moisture changes. In addition, fungal investment into storage triglycerides increases more than five-fold under drought. Community-level carbon use efficiency (the balance between anabolism and catabolism) is unaffected by drought but decreases in future climate conditions, favoring catabolism. Our results highlight that accounting for different microbial growth strategies can foster our understanding of soil microbial contributions to carbon cycling and feedback on the climate system.

摘要

微生物生长是土壤碳循环的核心。然而,微生物群落如何在气候变化下生长在很大程度上仍未得到探索。在这里,我们使用一个独特的野外实验模拟未来的气候条件(增加大气中的 CO 和温度)和干旱同时发生,并研究其对土壤微生物活性的影响。我们分别通过水汽交换将 H 或 O 追踪到膜(和储存)脂肪酸或 DNA 中,以评估土壤微生物生理学(复制、储存产物合成和碳利用效率)在群落和群体水平上的调整。我们表明,虽然在干旱期间细菌生长减少了一半,但真菌生长保持稳定,显示出对土壤水分变化的显著抵抗力。此外,在干旱条件下,真菌对储存三酰甘油的投资增加了五倍以上。群落水平的碳利用效率(合成代谢和分解代谢之间的平衡)不受干旱影响,但在未来的气候条件下下降,有利于分解代谢。我们的结果强调,考虑不同的微生物生长策略可以促进我们对土壤微生物对碳循环的贡献以及对气候系统的反馈的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3a9/11607446/4afe08b9bef6/41467_2024_54537_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验