Beugnon Rémy, Eisenhauer Nico, Lochner Alfred, Blechinger Margarete J, Buhr Paula E, Cesarz Simone, Farfan Monica A, Ferlian Olga, Rompeltien Howard Amanda J, Huang Yuanyuan, Kuhlmann Blanca S, Lienicke Nora, Mählmann Selma, Nowka Anneke, Petereit Emanuel, Ristok Christian, Schädler Martin, Schmid Jonas T M, Schulte Lara J, Seim Kora-Lene, Thouvenot Lise, Tremmel Raphael, Weber Lara, Weitowitz Jule, Yi Huimin, Sünnemann Marie
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
Leipzig Institute of Biology, Universität Leipzig, Leipzig, Germany.
Glob Chang Biol. 2025 Apr;31(4):e70214. doi: 10.1111/gcb.70214.
Soil microbial communities provide numerous ecosystem functions, such as nutrient cycling, decomposition, and carbon storage. However, global change, including land-use and climate changes, affects soil microbial communities and activity. As extreme weather events (e.g., heatwaves) tend to increase in magnitude and frequency, we investigated the effects of heat stress on the activity (e.g., respiration) of soil microbial communities that had experienced four different long-term land-use intensity treatments (ranging from extensive grassland and intensive grassland to organic and conventional croplands) and two climate conditions (ambient vs. predicted future climate). We hypothesized that both intensive land use and future climate conditions would reduce soil microbial respiration (H1) and that experimental heat stress would increase microbial respiration (H2). However, this increase would be less pronounced in soils with a long-term history of high-intensity land use and future climate conditions (H3), and soils with a higher fungal-to-bacterial ratio would show a more moderate response to warming (H4). Our study showed that soil microbial respiration was reduced under high land-use intensity (i.e., -43% between extensive grassland and conventional cropland) and future climate conditions (-12% in comparison to the ambient climate). Moreover, heat stress increased overall microbial respiration (+17% per 1°C increase), while increasing land-use intensity reduced the strength of this response (-25% slope reduction). In addition, increasing soil microbial biomass and fungal-to-bacterial ratio under low-intensity land use (i.e., extensive grassland) enhanced the microbial respiration response to heat stress. These findings show that intensive land use and climate change may compromise the activity of soil microbial communities as well as their respiration under heatwaves. In particular, soil microbial communities under high-intensity land use and future climate are less able to respond to additional stress, such as heatwaves, potentially threatening the critical ecosystem functions driven by soil microbes and highlighting the benefits of more sustainable agricultural practices.
土壤微生物群落发挥着众多生态系统功能,如养分循环、分解和碳储存。然而,包括土地利用和气候变化在内的全球变化会影响土壤微生物群落及其活性。由于极端天气事件(如热浪)的强度和频率趋于增加,我们研究了热胁迫对经历了四种不同长期土地利用强度处理(从粗放草地、集约草地到有机农田和传统农田)以及两种气候条件(当前气候与预测的未来气候)的土壤微生物群落活性(如呼吸作用)的影响。我们假设高强度土地利用和未来气候条件都会降低土壤微生物呼吸作用(假设1),实验性热胁迫会增加微生物呼吸作用(假设2)。然而,在长期高强度土地利用和未来气候条件下,这种增加将不太明显(假设3),且真菌与细菌比例较高的土壤对变暖的反应将更为缓和(假设4)。我们的研究表明,在高强度土地利用(即粗放草地和传统农田之间相差 -43%)和未来气候条件下(与当前气候相比降低了 -12%),土壤微生物呼吸作用会降低。此外,热胁迫增加了整体微生物呼吸作用(每升高1°C增加17%),而土地利用强度的增加降低了这种反应的强度(斜率降低25%)。此外,在低强度土地利用(即粗放草地)下,土壤微生物生物量和真菌与细菌比例的增加增强了微生物呼吸作用对热胁迫的反应。这些发现表明,高强度土地利用和气候变化可能会损害土壤微生物群落的活性及其在热浪下的呼吸作用。特别是,处于高强度土地利用和未来气候条件下的土壤微生物群落对额外胁迫(如热浪)的反应能力较弱,这可能会威胁到由土壤微生物驱动的关键生态系统功能,并凸显了更可持续农业实践的益处。