Khanfar Mohammad A, Saleh Mohammad
College of Pharmacy, Alfaisal University, Al Takhassusi Rd, Riyadh, 11533, Saudi Arabia.
Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman, 11942, Jordan.
Curr Pharm Des. 2025;31(18):1461-1473. doi: 10.2174/0113816128358219241210101947.
The emergence of SARS-CoV-2 and the COVID-19 pandemic highlighted the urgent need for novel antiviral therapies. The main protease (M) of SARS-CoV-2 is a key enzyme in viral replication and a promising therapeutic target.
This study employed virtual screening approaches to identify potential M inhibitors, leveraging both structure- and ligand-based methods.
Two optimum pharmacophore models were built from hundreds of crystallographic structures of M, validated through ROC curve analysis and Dynophores dynamic simulations. These models captured ≈ 60K hits from six diverse compound libraries made of more than 3 million compounds. Additionally, a ligandbased similarity search using ROCS software identified 1024 potential hits based on shape and atom-based comparisons with co-crystallized ligands. Subsequent molecular docking and filtering based on physicochemical properties and structural diversity yielded 16 and 6 hits from structure- and ligand-based screening, respectively. Molecular dynamics simulations were conducted on the top-scoring hits to assess their binding stability within the M active site. SCR00943 demonstrated stable binding, interacting favorably with key residues, including the catalytic dyad, resulting in a binding affinity of -61.2 kcal/mol.
This virtual screening campaign identified promising M inhibitors, showcasing the potential of computational approaches to accelerate drug discovery efforts against COVID-19.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的出现以及新冠疫情凸显了对新型抗病毒疗法的迫切需求。SARS-CoV-2的主要蛋白酶(M)是病毒复制中的关键酶,也是一个有前景的治疗靶点。
本研究采用虚拟筛选方法来识别潜在的M抑制剂,运用了基于结构和基于配体的方法。
从数百个M的晶体结构构建了两个最佳药效团模型,通过受试者工作特征曲线(ROC)分析和Dynophores动态模拟进行验证。这些模型从由超过300万种化合物组成的六个不同化合物库中筛选出约60000个命中化合物。此外,使用ROCS软件进行的基于配体的相似性搜索基于形状和与共结晶配体的原子比较确定了1024个潜在命中化合物。随后基于物理化学性质和结构多样性的分子对接和筛选分别从基于结构和基于配体的筛选中产生了16个和6个命中化合物。对得分最高的命中化合物进行分子动力学模拟,以评估它们在M活性位点内的结合稳定性。SCR00943表现出稳定的结合,与包括催化二元组在内的关键残基有良好的相互作用,结合亲和力为-61.2千卡/摩尔。
这次虚拟筛选活动确定了有前景的M抑制剂,展示了计算方法在加速针对新冠病毒的药物研发工作方面的潜力。