Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Weihenstephaner Steig 20, 85354 Freising, Germany.
Food Res Int. 2024 Nov;196:114965. doi: 10.1016/j.foodres.2024.114965. Epub 2024 Aug 22.
The traditional malted cereal used primarily for beverages is barley (Hordeum vulgare L.), while rye (Secale cereale L.) is mainly used in baked goods. In contrast, quinoa (Chenopodium quinoa Willd.) is a gluten-free pseudocereal, rich in starch and high-quality proteins, that can be used similarly to cereals. Their physicochemical properties and volatile compositions (e.g., aroma compounds) directly influence the finished food products. The sharp bitterness of unprocessed rye and the earthy aroma of native quinoa can interfere with the development and acceptance of food products. Malting is known to improve the processing and sensory properties of barley. A face-centered, central composite design was used to investigate the individual and interactive effects of three malting parameters (i.e., steep moisture (SM), germination temperature (T), and germination time (t)) on malt quality indicators (e.g., extract) and volatile formation (e.g., 3-methylbutanal) in rye and quinoa, and were compared to barley. The malt modification predictive models were then used to determine standard malting regimes for brewing quality malts. The malting parameters for the steeping and germination stages were: 43 %, 15 °C, and 6 d for barley; 45 %, 12 °C, and 8 d for rye; and 46 %, 16 °C, 6 d for quinoa. Malt modification and volatile formation were primarily associated with the interactive effect of germination temperature and time. Conversely, steep moisture had limited impact on malt modification but strongly regulated the formation of 34 known (pseudo)cereal volatile compounds. Principal component analysis (PCA) of the volatile data identified (pseudo)cereal specific volatile patterns. Aldehydes were characteristic in the cereal malts, particularly barley, whereas phenyl compounds and pyrazines were abundant in rye and quinoa malts, respectively. Controlling (pseudo)cereal modification and volatile development through the malting process could help deliver targeted sensory properties and improve the acceptance of malt-based food products.
传统上主要用于饮料的麦芽谷物是大麦(Hordeum vulgare L.),而黑麦(Secale cereale L.)主要用于烘焙食品。相比之下,藜麦(Chenopodium quinoa Willd.)是一种无麸质的假谷物,富含淀粉和高质量蛋白质,可类似谷物一样使用。它们的物理化学性质和挥发性成分(例如香气化合物)直接影响成品食品。未经加工的黑麦的强烈苦味和本地藜麦的泥土香气会干扰食品的开发和接受。众所周知,发芽可以改善大麦的加工和感官特性。采用中心复合面设计研究了三个发芽参数(即浸渍水分(SM)、发芽温度(T)和发芽时间(t))对黑麦和藜麦中麦芽质量指标(如浸出物)和挥发性形成(如 3-甲基丁醛)的单独和交互影响,并与大麦进行了比较。然后使用麦芽改性预测模型来确定酿造优质麦芽的标准麦芽处理方案。浸渍和发芽阶段的麦芽参数为:大麦 43%、15°C 和 6 天;黑麦 45%、12°C 和 8 天;藜麦 46%、16°C 和 6 天。麦芽改性和挥发性形成主要与发芽温度和时间的交互作用有关。相反,浸渍水分对麦芽改性的影响有限,但强烈调节 34 种已知(假)谷物挥发性化合物的形成。挥发性数据的主成分分析(PCA)确定了(假)谷物特有的挥发性模式。醛类在谷物麦芽中很典型,尤其是大麦,而苯基化合物和吡嗪类化合物在黑麦和藜麦麦芽中含量丰富。通过发芽过程控制(假)谷物改性和挥发性发展可以帮助提供有针对性的感官特性并提高基于麦芽的食品的接受度。