Suppr超能文献

利用高光谱成像技术对抹茶品质进行综合评价及成分可视化。

Comprehensive assessment of matcha qualities and visualization of constituents using hyperspectral imaging technology.

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

出版信息

Food Res Int. 2024 Nov;196:115110. doi: 10.1016/j.foodres.2024.115110. Epub 2024 Sep 21.

Abstract

Matcha, made from different tea leaves as raw material, exhibits diverse aromas and flavors. Therefore, there is an urgent need for a rapid, non-destructive method to assess the quality of matcha to ensure that these different characteristics are accurately assessed without compromising the integrity of the product. In this study, hyperspectral imaging technology (HSI) combined with machine learning methods enabled the first visual in situ assessment of matcha quality. The physicochemical contents of matcha were determined chemically. Qualitative and quantitative detection models for different types and grades were developed using HSI (containing Vis-NIR and NIR band). The results showed that hyperspectral data in the Vis-NIR were better than in the NIR band. The accuracy of XGBoost in modelling the classification of matcha grades reached 98.10 %. After feature selection using the random forest (RF) method, partial least squares regression (PLSR) was built to predicted the quality of matcha, which showed high prediction accuracy (test set R > 0.95). The model uses HSI to visually visualize spatial variations in constitutions (catechins, free amino acids, caffeine, soluble proteins, and soluble sugars) to show compositional differences between different types of matcha, providing a rapid non-destructive method for comprehensive assessment of matcha quality.

摘要

抹茶的原料不同,香气和口感也不同。因此,急需一种快速、无损的方法来评估抹茶的质量,以确保在不破坏产品完整性的情况下准确评估这些不同的特性。在这项研究中,高光谱成像技术(HSI)结合机器学习方法,首次实现了对抹茶质量的可视化原位评估。抹茶的理化成分通过化学方法确定。使用 HSI(包含可见-近红外和近红外波段)建立了不同类型和等级的定性和定量检测模型。结果表明,可见-近红外波段的高光谱数据优于近红外波段。XGBoost 对抹茶等级分类建模的准确性达到 98.10%。使用随机森林(RF)方法进行特征选择后,建立了偏最小二乘回归(PLSR)来预测抹茶的质量,显示出很高的预测准确性(测试集 R>0.95)。该模型使用 HSI 对组成(儿茶素、游离氨基酸、咖啡因、可溶性蛋白质和可溶性糖)的空间变化进行可视化,以显示不同类型抹茶之间的成分差异,为全面评估抹茶质量提供了一种快速无损的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验