Kumar Kiran, Arnold Alexandre A, Gauthier Raphaël, Mamone Marius, Paquin Jean-François, Warschawski Dror E, Marcotte Isabelle
Departement of Chemistry, Université du Québec à Montréal, Montreal, Québec, Canada.
PROTEO, CCVC, Département de Chimie, Université Laval, Québec, Québec, Canada.
Biophys J. 2025 Jan 21;124(2):256-266. doi: 10.1016/j.bpj.2024.11.3319. Epub 2024 Nov 28.
Fluorine-19 is an ideal nucleus for studying biological systems using NMR due to its rarity in biological environments and its favorable magnetic properties. In this work, we used a mixture of monofluorinated palmitic acids (PAs) as tracers to investigate the molecular interaction of the fluorinated drug rosuvastatin in model lipid membranes. More specifically, PAs labeled at the fourth and eighth carbon positions of their acyl chains were coincorporated in phospholipid bilayers to probe different depths of the hydrophobic core. First, the F chemical shift anisotropy (CSA), indicative of membrane fluidity, was simultaneously determined for fatty acids (FAs) and the fluorinated drug using either slow magic-angle spinning (MAS) 1D F solid-state NMR (SS-NMR) or MAS 2D F-F SS-NMR with CSA recoupling. Membrane heterogeneity and selective partitioning of rosuvastatin into fluid regions could thus be evidenced. We then examined the possibility of mapping intermolecular distances in bilayers, in both the fluid and gel phases, using F-F and H-F correlation experiments by SS-NMR using MAS. Spatial correlations were evidenced between the two PAs in the gel phase, while contacts between the statin and the lipids were detected in the fluid phase. This work paves the way to mapping membrane-active molecules in intact membranes, and stresses the need for new labeling strategies for this purpose.
氟-19是利用核磁共振研究生物系统的理想原子核,因为它在生物环境中很罕见且具有良好的磁特性。在这项工作中,我们使用单氟棕榈酸(PAs)混合物作为示踪剂,来研究氟化药物瑞舒伐他汀在模型脂质膜中的分子相互作用。更具体地说,在其酰基链的第四和第八个碳位置标记的PAs被共掺入磷脂双层中,以探测疏水核心的不同深度。首先,使用慢速魔角旋转(MAS)一维氟固态核磁共振(SS-NMR)或具有CSA重耦合的MAS二维氟-氟SS-NMR,同时测定脂肪酸(FAs)和氟化药物的F化学位移各向异性(CSA),这可指示膜流动性。由此可以证明膜的异质性以及瑞舒伐他汀向流体区域的选择性分配。然后,我们研究了通过使用MAS的SS-NMR进行氟-氟和氢-氟相关实验,来绘制双层膜在流体相和凝胶相中的分子间距离的可能性。在凝胶相中证明了两种PAs之间的空间相关性,而在流体相中检测到了他汀类药物与脂质之间的接触。这项工作为在完整膜中绘制膜活性分子铺平了道路,并强调了为此目的需要新的标记策略。