Park Kiyoul, Quach Truyen, Clark Teresa J, Kim Hyojin, Zhang Tieling, Wang Mengyuan, Guo Ming, Sato Shirley, Nazarenus Tara J, Blume Rostislav, Blume Yaroslav, Zhang Chi, Moose Stephen P, Swaminathan Kankshita, Schwender Jörg, Clemente Thomas Elmo, Cahoon Edgar B
Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
Plant Biotechnol J. 2025 Feb;23(2):660-673. doi: 10.1111/pbi.14527. Epub 2024 Nov 30.
Biomass crops engineered to accumulate energy-dense triacylglycerols (TAG or 'vegetable oils') in their vegetative tissues have emerged as potential feedstocks to meet the growing demand for renewable diesel and sustainable aviation fuel (SAF). Unlike oil palm and oilseed crops, the current commercial sources of TAG, vegetative tissues, such as leaves and stems, only transiently accumulate TAG. In this report, we used grain (Texas430 or TX430) and sugar-accumulating 'sweet' (Ramada) genotypes of sorghum, a high-yielding, environmentally resilient biomass crop, to accumulate TAG in leaves and stems. We initially tested several gene combinations for a 'push-pull-protect' strategy. The top TAG-yielding constructs contained five oil transgenes for a sorghum WRINKLED1 transcription factor ('push'), a Cuphea viscosissima diacylglycerol acyltransferase (DGAT; 'pull'), a modified sesame oleosin ('protect') and two combinations of specialized Cuphea lysophosphatidic acid acyltransferases and medium-chain acyl-acyl carrier protein thioesterases. Though intended to generate oils with medium-chain fatty acids, engineered lines accumulated oleic acid-rich oil to amounts of up to 2.5% DW in leaves and 2.0% DW in stems in the greenhouse, 36-fold and 49-fold increases relative to wild-type (WT) plants, respectively. Under field conditions, the top-performing event accumulated TAG to amount to 5.5% DW in leaves and 3.5% DW in stems, 78-fold and 58-fold increases, respectively, relative to WT TX430. Transcriptomic and fluxomic analyses revealed potential bottlenecks for increased TAG accumulation. Overall, our studies highlight the utility of a lab-to-field pipeline coupled with systems biology studies to deliver high vegetative oil sorghum for SAF and renewable diesel production.
经过基因工程改造,能够在营养组织中积累能量密集型三酰甘油(TAG,即“植物油”)的生物质作物已成为满足可再生柴油和可持续航空燃料(SAF)不断增长需求的潜在原料。与油棕和油籽作物不同,目前TAG的商业来源——营养组织,如叶子和茎,只会短暂积累TAG。在本报告中,我们使用了高粱的谷物(Texas430或TX430)和积累糖分的“甜”(Ramada)基因型,高粱是一种高产、环境适应性强的生物质作物,来在叶子和茎中积累TAG。我们最初测试了几种用于“推-拉-保护”策略的基因组合。产生TAG产量最高的构建体包含五个油转基因,分别是用于高粱WRINKLED1转录因子的(“推”)、一种紫花西番莲二酰甘油酰基转移酶(DGAT;“拉”)、一种修饰的芝麻油体蛋白(“保护”)以及两种专门的紫花西番莲溶血磷脂酸酰基转移酶和中链酰基-酰基载体蛋白硫酯酶的组合。尽管旨在生成含有中链脂肪酸的油,但在温室中,经过基因工程改造的品系在叶子中积累了高达2.5%干重的富含油酸的油,在茎中积累了2.0%干重,相对于野生型(WT)植物分别增加了36倍和49倍。在田间条件下,表现最佳的事件在叶子中积累TAG至5.5%干重,在茎中积累3.5%干重,相对于WT TX430分别增加了78倍和58倍。转录组学和通量组学分析揭示了TAG积累增加的潜在瓶颈。总体而言,我们的研究突出了实验室到田间流程与系统生物学研究相结合的实用性,以培育出用于SAF和可再生柴油生产的高含油量营养组织高粱。