Suppr超能文献

钾通道中选择性过滤器收缩的机制:高通量引导分子动力学模拟的见解

Mechanism of selectivity filter constriction in potassium channel: Insights from high-throughput steered molecular dynamics simulations.

作者信息

Zhong Wenyu

机构信息

Department of Mechanics, College of Architecture & Environment, & Failure Mechanics and Engineering Disaster Prevention, Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, China.

出版信息

Biochem Biophys Res Commun. 2024 Dec 31;741:151054. doi: 10.1016/j.bbrc.2024.151054. Epub 2024 Nov 23.

Abstract

Potassium channels are essential for regulating cellular excitability by controlling K ion flow. In voltage-gated potassium (Kv) channels, C-type inactivation modulates action potentials and holds significant physiological and clinical importance. The selectivity filter (SF) of potassium channels functions as the C-type inactivation gate by alternating between conductive and non-conductive states. The bacterial KcsA potassium channel, characterized by well-defined structural features, serves as an ideal model for investigating this mechanism through molecular dynamics (MD) simulations. However, limitations in computational power and the time scales of C-type inactivation, which extend up to seconds, have constrained a comprehensive understanding of this process. This study used high-throughput steered molecular dynamics (SMD) simulations, employing a knowledge-based acceleration strategy, to capture spontaneous SF constriction within nanoseconds in KcsA. Over a thousand SMD simulations recorded hundreds of SF constriction events, revealing a common constriction mechanism driven by an ion occupancy switch from state 13 to state 14 within the SF, facilitated by water molecules located behind the SF. Simulations of the E71V-mutated KcsA suggest that this constricted state and mechanism may also extend to Kv-like channels, albeit with reduced water dependence. These findings underscore the essential roles of ions and water molecules in regulating protein dynamics and highlight strategies for high-throughput MD studies to further explore protein dynamics.

摘要

钾通道对于通过控制钾离子流来调节细胞兴奋性至关重要。在电压门控钾(Kv)通道中,C型失活调节动作电位,具有重要的生理和临床意义。钾通道的选择性过滤器(SF)通过在导电和非导电状态之间交替,起到C型失活门的作用。细菌KcsA钾通道具有明确的结构特征,是通过分子动力学(MD)模拟研究这一机制的理想模型。然而,计算能力的限制以及长达数秒的C型失活时间尺度,限制了对这一过程的全面理解。本研究采用基于知识加速策略的高通量引导分子动力学(SMD)模拟,在纳秒级时间内捕捉KcsA中自发的SF收缩。超过一千次SMD模拟记录了数百次SF收缩事件,揭示了一种由SF内从状态13到状态14的离子占据切换驱动的共同收缩机制,该机制由位于SF后方的水分子促成。对E71V突变型KcsA的模拟表明,这种收缩状态和机制可能也适用于类Kv通道,尽管对水的依赖性降低。这些发现强调了离子和水分子在调节蛋白质动力学中的重要作用,并突出了高通量MD研究进一步探索蛋白质动力学的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验