Suppr超能文献

通过协作虚拟现实实现数字孪生体的增材制造零件检测。

Enabling additive manufacturing part inspection of digital twins via collaborative virtual reality.

作者信息

Chheang Vuthea, Narain Saurabh, Hooten Garrett, Cerda Robert, Au Brian, Weston Brian, Giera Brian, Bremer Peer-Timo, Miao Haichao

机构信息

Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.

出版信息

Sci Rep. 2024 Nov 30;14(1):29783. doi: 10.1038/s41598-024-80541-9.

Abstract

Digital twins (DTs) are an emerging capability in additive manufacturing (AM), set to revolutionize design optimization, inspection, in situ monitoring, and root cause analysis. AM DTs typically incorporate multimodal data streams, ranging from machine toolpaths and in-process imaging to X-ray CT scans and performance metrics. Despite the evolution of DT platforms, challenges remain in effectively inspecting them for actionable insights, either individually or in a multidisciplinary, geographically distributed team setting. Quality assurance, manufacturing departments, pilot labs, and plant operations must collaborate closely to reliably produce parts at scale. This is particularly crucial in AM where complex structures require a collaborative and multidisciplinary approach. Additionally, the large-scale data originating from different modalities and their inherent 3D nature pose significant hurdles for traditional 2D desktop-based inspection methods. To address these challenges and increase the value proposition of DTs, we introduce a novel virtual reality (VR) framework to facilitate collaborative and real-time inspection of DTs in AM. This framework includes advanced features for intuitive alignment and visualization of multimodal data, visual occlusion management, streaming large-scale volumetric data, and collaborative tools, substantially improving the inspection of AM components and processes to fully exploit the potential of DTs in AM.

摘要

数字孪生(DTs)是增材制造(AM)中的一项新兴技术,有望彻底改变设计优化、检测、原位监测和根本原因分析。增材制造数字孪生通常包含多模态数据流,范围从机床路径和过程中的成像到X射线计算机断层扫描(CT)和性能指标。尽管数字孪生平台不断发展,但在对其进行有效检测以获取可操作的见解方面,无论是单独检测还是在多学科、地理分布的团队环境中检测,都仍然存在挑战。质量保证部门、制造部门、试点实验室和工厂运营部门必须紧密合作,才能大规模可靠地生产零件。这在增材制造中尤为关键,因为复杂结构需要采用协作式多学科方法。此外,源自不同模态的大规模数据及其固有的三维特性,给传统的基于二维桌面的检测方法带来了重大障碍。为应对这些挑战并提高数字孪生的价值主张,我们引入了一种新颖的虚拟现实(VR)框架,以促进对增材制造中的数字孪生进行协作式实时检测。该框架包括用于多模态数据直观对齐和可视化、视觉遮挡管理、大规模体数据流式传输以及协作工具的高级功能,极大地改进了对增材制造组件和过程的检测,以充分发挥增材制造中数字孪生的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485c/11608265/77403f389330/41598_2024_80541_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验