Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.
Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
Science. 2019 Mar 8;363(6431):1075-1079. doi: 10.1126/science.aau7114. Epub 2019 Jan 31.
Additive manufacturing promises enormous geometrical freedom and the potential to combine materials for complex functions. The speed, geometry, and surface quality limitations of additive processes are linked to their reliance on material layering. We demonstrated concurrent printing of all points within a three-dimensional object by illuminating a rotating volume of photosensitive material with a dynamically evolving light pattern. We printed features as small as 0.3 millimeters in engineering acrylate polymers and printed soft structures with exceptionally smooth surfaces into a gelatin methacrylate hydrogel. Our process enables us to construct components that encase other preexisting solid objects, allowing for multimaterial fabrication. We developed models to describe speed and spatial resolution capabilities and demonstrated printing times of 30 to 120 seconds for diverse centimeter-scale objects.
增材制造有望实现巨大的几何自由度,并有可能将多种材料组合在一起实现复杂功能。增材工艺的速度、几何形状和表面质量的限制与其对材料分层的依赖有关。我们通过用动态变化的光图案照亮旋转的光敏材料体积,实现了三维物体中所有点的同时打印。我们使用工程丙烯酸酯聚合物打印出了小至 0.3 毫米的特征,并将具有异常光滑表面的软结构打印到明胶甲基丙烯酸盐水凝胶中。我们的工艺使我们能够构建封装其他现有固体物体的组件,从而实现多材料制造。我们开发了模型来描述速度和空间分辨率能力,并展示了 30 到 120 秒的打印时间,用于各种厘米级别的物体。