Suppr超能文献

新的 6 自由度软体囊机器人的设计、制造和测试,以扩大开放和经鼻颅底入路的可达范围。

Design, fabrication, and testing of a new soft-pouch robot with 6 degrees of freedom to expand the reach of open and endonasal skull base approaches.

机构信息

1Department of Electrical Engineering and Computer Science, University of California, Berkeley; and.

2Department of Neurological Surgery, University of California, San Francisco, California.

出版信息

Neurosurg Focus. 2024 Dec 1;57(6):E7. doi: 10.3171/2024.9.FOCUS24540.

Abstract

OBJECTIVE

Most robots currently used in neurosurgery aid surgeons in placing spinal hardware and guiding electrodes and biopsy probes toward brain targets. These robots are inflexible, cannot turn corners, and exert excessive force when dissecting and retracting brain tissue, limiting their applicability in cranial base surgery. In this study, the authors present a novel soft-pouch robot prototype driven by compressed air and capable of gentle tissue manipulation. The robot is manufactured with technology developed by the authors, with multiple bidirectional bending points and a miniature camera running through the robot's central channel.

METHODS

A soft, pneumatically driven pouch manipulator was created using a novel rapid and scalable system (integrated multilayer pouch robots with inkjet-patterned thin films). Made from 4 layers of thin, low-density polyethylene films, the manipulator has a thin deflated profile (152 µm) and contains 5 independent bidirectional joints with 50° range in each direction, as well as a wrapping end-effector. The robot carries a camera through its central channel. Four cadaveric models were used to demonstrate the robotic prototype being maneuvered inside different anatomical structures during simulated endonasal and posterior fossa approaches, with a manually positioned robot base and manually controlled air pressures.

RESULTS

The robot is a pneumatically driven, soft-continuum manipulator with 12 control inputs and 6 independently controllable degrees of freedom. This design enables in-plane obstacle avoidance and orientation control. The robot is trapezoidal-shaped, with a total weight of 0.4 g, a 10-mm-wide distal end, and a length of 138 mm. The variable production cost (materials cost) of the manipulator is approximately $1. The manipulator is maneuvered to enter the maxillary sinus and through the endonasal corridor, demonstrating its potential use for anterior skull base approaches. It is also successfully maneuvered around the pons in a simulated retrosigmoid approach.

CONCLUSIONS

This robot offers a promising solution for safely maneuvering through narrow surgical windows encountered during skull base approaches. The multiple bending points of the robot, combined with its passive deformation capacity, allow it to turn around immovable structures, expanding the reach of surgical openings. The cost-effectiveness, rapid production, and scalability of the robot represent additional advantages.

摘要

目的

目前大多数应用于神经外科的机器人可辅助外科医生放置脊柱硬件并引导电极和活检探针到达脑部目标。这些机器人缺乏灵活性,不能转弯,在解剖和牵拉脑组织时会施加过大的力,限制了它们在颅底手术中的适用性。在本研究中,作者提出了一种新型的由压缩空气驱动的软袋机器人原型,能够实现轻柔的组织操作。该机器人采用作者开发的技术制造,具有多个双向弯曲点和一个微型摄像头,穿过机器人的中央通道。

方法

使用一种新颖的快速可扩展系统(集成了具有喷墨图案的薄膜的多层软袋机器人)创建了一个由压缩空气驱动的软袋操纵器。该操纵器由 4 层薄的低密度聚乙烯薄膜制成,在瘪缩状态下具有较薄的轮廓(152 µm),并包含 5 个独立的双向关节,每个方向的运动范围为 50°,还有一个包裹的末端执行器。机器人通过中央通道携带摄像头。使用四个尸体模型来演示在模拟经鼻和后颅窝入路时,机器人在不同解剖结构内的操纵,机器人的基础位置手动定位,空气压力手动控制。

结果

该机器人是一个由压缩空气驱动的软连续体操纵器,具有 12 个控制输入和 6 个独立可控自由度。这种设计实现了平面内障碍物避让和方向控制。机器人呈梯形,总重量为 0.4 克,远端宽 10 毫米,长 138 毫米。操纵器的可变生产成本(材料成本)约为 1 美元。操纵器被操纵进入上颌窦并通过经鼻通道,表明其在颅底前部入路中有潜在的应用。它还成功地在模拟乙状窦后入路中绕过脑桥。

结论

该机器人为安全地在颅底入路中通过狭窄的手术窗口提供了一种有前景的解决方案。机器人的多个弯曲点和其被动变形能力结合起来,可以使其绕过不可移动的结构,扩大手术开口的可达范围。机器人的成本效益、快速生产和可扩展性是其额外的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验