Suppr超能文献

利用生物信息学和机器学习鉴定用于诊断肺动脉高压的免疫相关基因panel

Identification of an immune-related gene panel for the diagnosis of pulmonary arterial hypertension using bioinformatics and machine learning.

作者信息

Xiong Pan, Huang Qiuhong, Mao Yang, Qian Hang, Yang Yi, Mou Ziye, Deng Xiaohui, Wang Guansong, He Binfeng, You Zaichun

机构信息

Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.

Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.

出版信息

Int Immunopharmacol. 2025 Jan 10;144:113694. doi: 10.1016/j.intimp.2024.113694. Epub 2024 Nov 30.

Abstract

OBJECTIVE

This study aimed to screen an immune-related gene (IRG) panel and develop a novel approach for diagnosing pulmonary arterial hypertension (PAH) utilizing bioinformatics and machine learning (ML).

METHODS

Gene expression profiles were retrieved from the Gene Expression Omnibus (GEO) database to identify differentially expressed immune-related genes (IRG-DEGs). We employed five machine learning algorithms-LASSO, random forest (RF), boosted regression trees (BRT), XGBoost, and support vector machine recursive feature elimination (SVM-RFE) to identify biomarkers derived from IRG-DEGs associated with the diagnosis of PAH, incorporating them into the IRG-DEGs panel. Validation of these biomarker levels in lung tissue was conducted in a hypoxia-induced mouse model of PAH, investigating the correlation between AIMP1, IL-15, GLRX, SOD1, Fulton's index (RVHI), and the ratio of pulmonary artery medial thickness to external diameter (MT%). Subsequently, we developed a nomogram model based on the IRG-DEGs panel in lung tissue for diagnosing PAH. The expression, distribution, and pseudotime analysis of these biomarkers across various immune cell types were assessed using single-cell sequencing datasets. Finally, we evaluated the diagnostic utility of the nomogram model based on the IRG-DEGs panel in peripheral blood mononuclear cells (PBMCs) for diagnosing PAH.

RESULTS

A total of 36 upregulated and 17 downregulated IRG-DEGs were identified in lung tissue from patients with PAH. AIMP1, IL-15, GLRX, and SOD1 were subsequently selected as novel immune-related biomarkers for PAH through the aforementioned machine learning algorithms and incorporated into the IRG-DEGs panel. Experimental results from mice with PAH validated that the expression levels of AIMP1, IL-15, and GLRX in lung tissue were elevated, while SOD1 expression was significantly reduced. Additionally, GLRX and AIMP1 exhibited positive correlations with Fulton's index (RVHI). The expression levels of GLRX, IL-15, and AIMP1 showed positive correlations with MT%, whereas SOD1 exhibited negative correlations with MT%. Analysis of single-cell sequencing data further revealed that the levels of IRG-DEG panel members gradually increased during the pseudotime trajectory from PBMCs to macrophages, correlating with macrophage activation. The area under the curve (AUC) for diagnosing PAH using a nomogram model based on the IRG-DEGs panel derived from lung tissue samples and PBMCs was ≥0.969 and 0.900, respectively.

CONCLUSIONS

We developed an IRG-DEGs panel containing AIMP1, IL-15, GLRX, and SOD1, which may facilitate the diagnosis of pulmonary arterial hypertension (PAH). These findings provide novel insights that may enhance diagnostic and therapeutic approaches for PAH.

摘要

目的

本研究旨在筛选一个免疫相关基因(IRG)面板,并利用生物信息学和机器学习(ML)开发一种诊断肺动脉高压(PAH)的新方法。

方法

从基因表达综合数据库(GEO)检索基因表达谱,以鉴定差异表达的免疫相关基因(IRG-DEG)。我们采用五种机器学习算法——套索回归(LASSO)、随机森林(RF)、增强回归树(BRT)、XGBoost和支持向量机递归特征消除(SVM-RFE),从与PAH诊断相关的IRG-DEG中识别生物标志物,并将其纳入IRG-DEG面板。在PAH缺氧诱导小鼠模型中对肺组织中这些生物标志物水平进行验证,研究氨基酰-tRNA合成酶相互作用多功能蛋白1(AIMP1)、白细胞介素-15(IL-15)、谷氧还蛋白(GLRX)、超氧化物歧化酶1(SOD1)、富尔顿指数(RVHI)以及肺动脉中膜厚度与外径之比(MT%)之间的相关性。随后,我们基于肺组织中的IRG-DEG面板开发了一种列线图模型用于诊断PAH。使用单细胞测序数据集评估这些生物标志物在各种免疫细胞类型中的表达、分布和伪时间分析。最后,我们评估基于IRG-DEG面板的列线图模型在外周血单核细胞(PBMC)中诊断PAH的效用。

结果

在PAH患者的肺组织中总共鉴定出36个上调和17个下调的IRG-DEG。随后通过上述机器学习算法选择AIMP1、IL-15、GLRX和SOD1作为PAH新的免疫相关生物标志物,并将其纳入IRG-DEG面板。PAH小鼠的实验结果证实,肺组织中AIMP1、IL-15和GLRX的表达水平升高,而SOD1表达显著降低。此外,GLRX和AIMP1与富尔顿指数(RVHI)呈正相关。GLRX、IL-15和AIMP1的表达水平与MT%呈正相关,而SOD1与MT%呈负相关。单细胞测序数据分析进一步显示,从PBMC到巨噬细胞的伪时间轨迹中,IRG-DEG面板成员水平逐渐升高,与巨噬细胞激活相关。基于肺组织样本和PBMC的IRG-DEG面板使用列线图模型诊断PAH的曲线下面积(AUC)分别≥0.969和0.900。

结论

我们开发了一个包含AIMP1、IL-15、GLRX和SOD1的IRG-DEG面板,这可能有助于肺动脉高压(PAH)的诊断。这些发现提供了新的见解,可能会增强PAH的诊断和治疗方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验