Suppr超能文献

通过机器学习和生物信息学技术对脓毒症中的诊断生物标志物分析和免疫细胞浸润特征进行全面整合。

Comprehensive integration of diagnostic biomarker analysis and immune cell infiltration features in sepsis via machine learning and bioinformatics techniques.

作者信息

Yang Liuqing, Xuan Rui, Xu Dawei, Sang Aming, Zhang Jing, Zhang Yanfang, Ye Xujun, Li Xinyi

机构信息

Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.

Department of Anesthesiology, Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Sugery, Wuhan, China.

出版信息

Front Immunol. 2025 Mar 10;16:1526174. doi: 10.3389/fimmu.2025.1526174. eCollection 2025.

Abstract

INTRODUCTION

Sepsis, a critical medical condition resulting from an irregular immune response to infection, leads to life-threatening organ dysfunction. Despite medical advancements, the critical need for research into dependable diagnostic markers and precise therapeutic targets.

METHODS

We screened out five gene expression datasets (GSE69063, GSE236713, GSE28750, GSE65682 and GSE137340) from the Gene Expression Omnibus. First, we merged the first two datasets. We then identified differentially expressed genes (DEGs), which were subjected to KEGG and GO enrichment analyses. Following this, we integrated the DEGs with the genes from key modules as determined by Weighted Gene Co-expression Network Analysis (WGCNA), identifying 262 overlapping genes. 12 core genes were subsequently selected using three machine-learning algorithms: random forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine-Recursive Feature Elimination (SVW-RFE). The utilization of the receiver operating characteristic curve in conjunction with the nomogram model served to authenticate the discriminatory strength and efficacy of the key genes. CIBERSORT was utilized to evaluate the inflammatory and immunological condition of sepsis. Astragalus, Salvia, and Safflower are the primary elements of Xuebijing, commonly used in the clinical treatment of sepsis. Using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), we identified the chemical constituents of these three herbs and their target genes.

RESULTS

We found that CD40LG is not only one of the 12 core genes we identified, but also a common target of the active components quercetin, luteolin, and apigenin in these herbs. We extracted the common chemical structure of these active ingredients -flavonoids. Through docking analysis, we further validated the interaction between flavonoids and CD40LG. Lastly, blood samples were collected from healthy individuals and sepsis patients, with and without the administration of Xuebijing, for the extraction of peripheral blood mononuclear cells (PBMCs). By qPCR and WB analysis. We observed significant differences in the expression of CD40LG across the three groups. In this study, we pinpointed candidate hub genes for sepsis and constructed a nomogram for its diagnosis.

DISCUSSION

This research not only provides potential diagnostic evidence for peripheral blood diagnosis of sepsis but also offers insights into the pathogenesis and disease progression of sepsis.

摘要

引言

脓毒症是一种因对感染产生不规则免疫反应而导致的严重病症,可引发危及生命的器官功能障碍。尽管医学不断进步,但对于可靠诊断标志物和精确治疗靶点的研究仍极为迫切。

方法

我们从基因表达综合数据库(Gene Expression Omnibus)中筛选出五个基因表达数据集(GSE69063、GSE236713、GSE28750、GSE65682和GSE137340)。首先,我们合并了前两个数据集。然后,我们鉴定出差异表达基因(DEGs),并对其进行KEGG和GO富集分析。在此之后,我们将这些差异表达基因与通过加权基因共表达网络分析(WGCNA)确定的关键模块中的基因进行整合,鉴定出262个重叠基因。随后,使用三种机器学习算法:随机森林(RF)、最小绝对收缩和选择算子(LASSO)以及支持向量机递归特征消除(SVW - RFE),选出了12个核心基因。利用受试者工作特征曲线结合列线图模型来验证关键基因的鉴别力和有效性。使用CIBERSORT评估脓毒症的炎症和免疫状况。血必净常用于脓毒症的临床治疗,其主要成分包括黄芪、丹参和红花。我们使用中药系统药理学数据库与分析平台(TCMSP),鉴定了这三种草药的化学成分及其靶基因。

结果

我们发现CD40LG不仅是我们鉴定出的12个核心基因之一,还是这些草药中活性成分槲皮素、木犀草素和芹菜素的共同靶点。我们提取了这些活性成分的共同化学结构——黄酮类化合物。通过对接分析,我们进一步验证了黄酮类化合物与CD40LG之间的相互作用。最后,采集了健康个体以及脓毒症患者在使用和未使用血必净情况下的血样,用于提取外周血单核细胞(PBMCs)。通过qPCR和WB分析,我们观察到三组中CD40LG的表达存在显著差异。在本研究中,我们确定了脓毒症的候选枢纽基因并构建了用于其诊断的列线图。

讨论

本研究不仅为脓毒症的外周血诊断提供了潜在的诊断依据,还为脓毒症的发病机制和疾病进展提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c42a/11931141/f50d58507a1a/fimmu-16-1526174-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验