Suppr超能文献

解锁见解:利用机器学习识别埃及5岁以下儿童的消瘦情况和风险因素。

Unlocking insights: Using machine learning to identify wasting and risk factors in Egyptian children under 5.

作者信息

Hendy Abdelaziz, Abdelaliem Sally Mohammed Farghaly, Sultan Hosny Maher, Alahmedi Shorok Hamed, Ibrahim Rasha Kadri, Abdelrazek Eman Mohamed Ebrahim, Elmahdy Masani Abdelbagi Ahmed, Hendy Ahmed

机构信息

Pediatric Nursing Department, Faculty Nursing, Ain Shams University, Cairo, Egypt.

Department of Nursing Management and Education, College of Nursing, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia.

出版信息

Nutrition. 2025 Mar;131:112631. doi: 10.1016/j.nut.2024.112631. Epub 2024 Nov 12.

Abstract

INTRODUCTION

Malnutrition, particularly wasting, continues to be a significant public health issue among children under five years in Egypt. Despite global advancements in child health, the prevalence of wasting remains a critical concern. This study employs machine learning techniques to identify and analyze the determinants of wasting in this population.

AIM

To evaluate the prevalence of wasting among children under five years in Egypt and identify key factors associated with wasting using machine learning models.

METHODS

This study is based on secondary data sourced from the Demographic and Health Surveys (DHS), conducted in 2005, 2008, and 2014. Six machine learning classifiers (XGBoost, Logistic Regression, Random Forest, Gradient Boosting, K-Nearest Neighbor, and Decision Tree) were applied to the dataset. The study included children under five years of age, focusing on nutritional status, maternal health, and socio-economic factors. The dataset was cleaned, preprocessed, encoded using one-hot encoding, and split into training (70%) and test (30%) sets. Additionally, k-fold cross-validation and the StandardScaler function from Scikit-learn were used. Performance metrics such as accuracy, precision, recall, F1 score, and ROC-AUC were used to evaluate and compare the algorithms.

RESULTS

It was observed that 76.2% of the children in the dataset have normal nutritional status. Furthermore, 5.2% were found to be suffering from wasting (1.7% experiencing severe wasting and 3.5% moderate wasting), with notable regional disparities. The XGBoost model outperformed other models. Its efficiency metrics include an accuracy of 94.8%, precision of 94.7%, recall of 94.7%, F1 score of 94.7%, and an ROC-AUC of 99.4%. These results indicate that XGBoost was highly effective in predicting wasting.

CONCLUSION

Machine learning techniques, particularly XGBoost, show significant potential for improving the classification of nutritional status and addressing wasting among children in Egypt. However, the limitations in simpler models highlight the need for further research to refine predictive tools and develop targeted interventions. Addressing the identified determinants of wasting can contribute to more effective public health strategies.

摘要

引言

营养不良,尤其是消瘦,在埃及五岁以下儿童中仍然是一个重大的公共卫生问题。尽管全球儿童健康状况有所改善,但消瘦的患病率仍然是一个关键问题。本研究采用机器学习技术来识别和分析该人群消瘦的决定因素。

目的

评估埃及五岁以下儿童消瘦的患病率,并使用机器学习模型确定与消瘦相关的关键因素。

方法

本研究基于2005年、2008年和2014年进行的人口与健康调查(DHS)的二手数据。六个机器学习分类器(XGBoost、逻辑回归、随机森林、梯度提升、K近邻和决策树)被应用于数据集。该研究纳入了五岁以下儿童,重点关注营养状况、孕产妇健康和社会经济因素。数据集经过清理、预处理、使用独热编码进行编码,并分为训练集(70%)和测试集(30%)。此外,使用了k折交叉验证和来自Scikit-learn的StandardScaler函数。使用准确率、精确率、召回率、F1分数和ROC-AUC等性能指标来评估和比较算法。

结果

观察到数据集中76.2%的儿童营养状况正常。此外,发现5.2%的儿童患有消瘦(1.7%为重度消瘦,3.5%为中度消瘦),存在明显的地区差异。XGBoost模型优于其他模型。其效率指标包括准确率94.8%、精确率94.7%、召回率94.7%、F1分数94.7%和ROC-AUC为99.4%。这些结果表明XGBoost在预测消瘦方面非常有效。

结论

机器学习技术,特别是XGBoost,在改善埃及儿童营养状况分类和解决消瘦问题方面显示出巨大潜力。然而,简单模型的局限性凸显了进一步研究以完善预测工具和制定针对性干预措施的必要性。解决已确定的消瘦决定因素有助于制定更有效的公共卫生策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验