Jamshidi Afshin, Espin-Garcia Osvaldo, Wilson Thomas G, Loveless Ian, Pelletier Jean-Pierre, Martel-Pelletier Johanne, Ali Shabana Amanda
Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
Department of Biostatistics, Schroeder Arthritis Institute and Krembil Research Institute, University Health Network, Toronto, Canada; Dalla Lana School of Public Health and Department of Statistical Sciences, University of Toronto, Toronto, Canada; Department of Epidemiology and Biostatistics, University of Western Ontario, London, Canada, Toronto, Canada.
Osteoarthritis Cartilage. 2025 Mar;33(3):330-340. doi: 10.1016/j.joca.2024.11.008. Epub 2024 Nov 29.
Conventional methodologies are ineffective in predicting the rapid progression of knee osteoarthritis (OA). MicroRNAs (miRNAs) show promise as biomarkers for patient stratification. We aimed to develop a miRNA prognosis model for identifying knee OA structural progressors/non-progressors using integrated machine/deep learning tools.
Baseline serum miRNAs from Osteoarthritis Initiative (OAI) participants were isolated and sequenced. Participants were categorized based on their likelihood of knee structural progression/non-progression using magnetic resonance imaging and X-ray data. For prediction model development, 152 OAI participants (91 progressors, 61 non-progressors) were used. MiRNA features were reduced through VarClusHi clustering. Key miRNAs and OA determinants (age, sex, body mass index, race) were identified using seven machine learning tools. The final prediction model was developed using advanced machine/deep learning techniques. Model performance was assessed with area under the curve (AUC) (95% confidence intervals) and accuracy. Monte Carlo cross-validation ensured robustness. Model validation used 30 OAI baseline plasma samples from an independent set of participants (14 progressors, 16 non-progressors).
Feature clustering selected 107 miRNAs. Elastic Net was chosen for feature selection. An optimized prediction model based on an Artificial Neural Network comprising age and four miRNAs (hsa-miR-556-3p, hsa-miR-3157-5p, hsa-miR-200a-5p, hsa-miR-141-3p) exhibited excellent performance (AUC, 0.94 [0.89, 0.97]; accuracy, 0.84 [0.77, 0.89]). Model validation performance (AUC, 0.81 [0.63, 0.92]; accuracy, 0.83 [0.66, 0.93]) demonstrated the potential for generalization.
This study introduces a novel miRNA prognosis model for knee OA patients at risk of structural progression. It requires five baseline features, demonstrates excellent performance, is validated with an independent set, and holds promise for future personalized therapeutic monitoring.
传统方法在预测膝关节骨关节炎(OA)的快速进展方面效果不佳。微小RNA(miRNA)有望作为患者分层的生物标志物。我们旨在开发一种miRNA预后模型,使用集成的机器学习/深度学习工具来识别膝关节OA结构进展者/非进展者。
从骨关节炎倡议(OAI)参与者的基线血清中分离并测序miRNA。使用磁共振成像和X射线数据,根据膝关节结构进展/非进展的可能性对参与者进行分类。为了开发预测模型,使用了152名OAI参与者(91名进展者,61名非进展者)。通过VarClusHi聚类减少miRNA特征。使用七种机器学习工具确定关键miRNA和OA决定因素(年龄、性别、体重指数、种族)。使用先进的机器学习/深度学习技术开发最终的预测模型。使用曲线下面积(AUC)(95%置信区间)和准确性评估模型性能。蒙特卡罗交叉验证确保了稳健性。模型验证使用了来自一组独立参与者的30份OAI基线血浆样本(14名进展者,16名非进展者)。
特征聚类选择了107种miRNA。选择弹性网络进行特征选择。基于包含年龄和四种miRNA(hsa-miR-556-3p、hsa-miR-3157-5p、hsa-miR-200a-5p、hsa-miR-141-3p)的人工神经网络的优化预测模型表现出优异的性能(AUC,0.94[0.89,0.97];准确性,0.84[0.77,0.89])。模型验证性能(AUC,0.81[0.63,0.92];准确性,0.83[0.66,0.93])证明了其泛化潜力。
本研究为有结构进展风险的膝关节OA患者引入了一种新型miRNA预后模型。它需要五个基线特征,表现出优异的性能,通过独立数据集进行了验证,并有望用于未来的个性化治疗监测。