Suppr超能文献

原位研究揭示电化学氧化过程中模型配位氧化物的时空重构

Operando Studies Redirect Spatiotemporal Restructuration of Model Coordinated Oxides in Electrochemical Oxidation.

作者信息

Guan Daqin, Xu Hengyue, Huang Yu-Cheng, Jing Chao, Tsujimoto Yoshihiro, Xu Xiaomin, Lin Zezhou, Tang Jiayi, Wang Zehua, Sun Xiao, Zhao Leqi, Liu Hanwen, Liu Shangheng, Chen Chien-Te, Pao Chih-Wen, Ni Meng, Hu Zhiwei, Shao Zongping

机构信息

WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6102, Australia.

National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan.

出版信息

Adv Mater. 2025 Feb;37(7):e2413073. doi: 10.1002/adma.202413073. Epub 2024 Dec 1.

Abstract

Tetrahedral, pyramidal, and octahedral metal-oxygen coordinated ligands are fundamental components in all metal-oxide structures. Understanding the impacts of their spatiotemporal behaviors during electrochemical oxidation is crucial for diverse applications, yet remains unsolved due to challenges in designing model oxides and conducting operando characterizations. Herein, combining a suite of advanced operando characterizations and systematic computations, a link between oxygen-evolving performance and operational structural properties is established on model oxides. Compared with tetrahedral and octahedral structures, pyramidal structure is more susceptible to OH attack due to its pristine unsaturated and asymmetric features and constant single-electron occupancy on the active z orbital during reaction, leading to surface-to-bulk restructuration into active amorphous high-valence CoOOH with edge-sharing configurations. This is accompanied by ion leaching to create nanoscale space, following a leaching tendency of Sr > Ba > La > Y. Operando soft X-ray absorption spectroscopy demonstrates a harder non-uniform dehydrogenation process over time (CoOOH → CoOOH → CoOO) because of the enhanced CoO covalency with higher energy barriers. Lattice oxygen participates in active CoOOH formation but sacrifices stability. To address this activity-stability trade-off, an ion-tuning strategy is proposed to simultaneously enhance both activity and stability in electrode and device.

摘要

四面体、金字塔形和八面体金属-氧配位配体是所有金属氧化物结构中的基本组成部分。了解它们在电化学氧化过程中的时空行为的影响对于各种应用至关重要,但由于设计模型氧化物和进行原位表征方面的挑战,这一问题仍未得到解决。在此,通过结合一系列先进的原位表征和系统计算,在模型氧化物上建立了析氧性能与操作结构性质之间的联系。与四面体和八面体结构相比,金字塔形结构由于其原始的不饱和和不对称特征以及反应过程中活性z轨道上恒定的单电子占据,更容易受到OH攻击,导致从表面到体相重构为具有边共享构型的活性非晶态高价CoOOH。这伴随着离子浸出以产生纳米级空间,浸出趋势为Sr > Ba > La > Y。原位软X射线吸收光谱表明,由于CoO共价性增强且能垒更高,随着时间的推移,脱氢过程更加困难且不均匀(CoOOH → CoOOH → CoOO)。晶格氧参与活性CoOOH的形成,但牺牲了稳定性。为了解决这种活性-稳定性权衡问题,提出了一种离子调控策略,以同时提高电极和器件的活性和稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验