Suppr超能文献

利用几何深度学习和混合密度模型估计蛋白质-配体相互作用。

Estimating protein-ligand interactions with geometric deep learning and mixture density models.

作者信息

Kalakoti Yogesh, Gawande Swaraj, Sundar Durai

机构信息

Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India.

出版信息

J Biosci. 2024;49.

Abstract

Understanding the interactions between a ligand and its molecular target is crucial in guiding the optimization of molecules for any drug design workflow. Multiple experimental and computational methods have been developed to better understand these intermolecular interactions. With the availability of a large number of structural datasets, there is a need for developing statistical frameworks that improve upon existing physicsbased solutions. Here, we report a method based on geometric deep learning that is capable of predicting the binding conformations of ligands to protein targets. A technique to generate graphical representations of proteins was developed to exploit the topological and electrostatic properties of the binding region. The developed framework, based on graph neural networks, learns a statistical potential based on the distance likelihood, which is tailor-made for each ligand-target pair. This potential can be coupled with global optimization algorithms such as differential evolution to reproduce the experimental binding conformations of ligands. We show that the potential based on distance likelihood, described here, performs similarly or better than well-established scoring functions for docking and screening tasks. Overall, this method represents an example of how artificial intelligence can be used to improve structure-based drug design.

摘要

了解配体与其分子靶点之间的相互作用对于指导任何药物设计流程中分子的优化至关重要。已经开发了多种实验和计算方法来更好地理解这些分子间相互作用。随着大量结构数据集的可得性,需要开发能够改进现有基于物理的解决方案的统计框架。在此,我们报告一种基于几何深度学习的方法,该方法能够预测配体与蛋白质靶点的结合构象。开发了一种生成蛋白质图形表示的技术,以利用结合区域的拓扑和静电特性。基于图神经网络开发的框架基于距离似然学习统计势,该统计势是为每个配体 - 靶点对量身定制的。这种势可以与全局优化算法(如差分进化)相结合,以重现配体的实验结合构象。我们表明,这里描述的基于距离似然的势在对接和筛选任务中表现与成熟的评分函数相似或更好。总体而言,该方法代表了人工智能如何用于改进基于结构的药物设计的一个例子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验