Suppr超能文献

成人噬血细胞综合征中的分类与回归树分析:识别重症监护病房患者急性心力衰竭的预测因素

Classification and Regression Tree Analysis in Adult Hemophagocytic Syndrome: Identifying Acute Heart Failure Predictors in ICU Patients.

作者信息

Kilincer Bozgul Sukriye Miray, Kurtulmus Ilkce Akgun, Yargucu Zihni Figen, Akad Soyer Nur, Yagmur Burcu, Gunes Ajda, Koymen Gorkem, Bozkurt Devrim

机构信息

Ege University, Faculty of Medicine, Department of Internal Medicine, Division of Intensive Care, Izmir, Turkey.

Torbalı State Hospital, Izmir, Turkey.

出版信息

J Inflamm Res. 2024 Nov 25;17:9711-9723. doi: 10.2147/JIR.S491627. eCollection 2024.

Abstract

BACKGROUND

Hemophagocytic syndrome (HPS) is a rare but life-threatening condition often complicated by heart failure (HF). This study aimed to identify predictors of acute heart failure in HPS patients using classification and regression tree (CART) analysis.

METHODS

A retrospective analysis was performed on 146 HPS patients without a diagnosis of HF. Variables such as age, cardiothoracic ratio (CTR), etiology, N-terminal pro-brain natriuretic peptide (NT-proBNP), C-reactive protein (CRP), ferritin, triglyceride, and lactate dehydrogenase (LDH) levels at diagnosis were included. CART analysis was employed to develop models predicting heart failure status. The model's performance was evaluated using sensitivity, specificity, and overall accuracy.

RESULTS

This study identified several key predictors of acute heart failure in HPS patients. CTR emerged as the most significant predictor, with patients exhibiting a higher ratio being at a greater risk of developing heart failure. NT-proBNP levels and CRP levels were also significant predictors, indicating cardiac stress and systemic inflammation. Age and etiology played crucial roles, with older patients and those with rheumatological causes showing a higher susceptibility to heart failure. The CART models demonstrated good accuracy, with CTR being the most important predictor.

CONCLUSION

This study highlights critical factors, such as CTR, NT-proBNP, CRP levels, age, and etiology in predicting acute heart failure in HPS patients. Early identification of these predictors can facilitate timely interventions, potentially improving outcomes and reducing mortality rates. These findings provide valuable insights for clinical practice and pave the way for further research on acute heart failure management in HPS.

摘要

背景

噬血细胞综合征(HPS)是一种罕见但危及生命的疾病,常并发心力衰竭(HF)。本研究旨在使用分类回归树(CART)分析确定HPS患者急性心力衰竭的预测因素。

方法

对146例未诊断为HF的HPS患者进行回顾性分析。纳入的变量包括年龄、心胸比率(CTR)、病因、诊断时的N末端脑钠肽前体(NT-proBNP)、C反应蛋白(CRP)、铁蛋白、甘油三酯和乳酸脱氢酶(LDH)水平。采用CART分析建立预测心力衰竭状态的模型。使用敏感性、特异性和总体准确性评估模型的性能。

结果

本研究确定了HPS患者急性心力衰竭的几个关键预测因素。CTR是最显著的预测因素,比率较高的患者发生心力衰竭的风险更大。NT-proBNP水平和CRP水平也是显著的预测因素,表明存在心脏应激和全身炎症。年龄和病因起着关键作用,老年患者和风湿性病因患者对心力衰竭的易感性更高。CART模型显示出良好的准确性,CTR是最重要的预测因素。

结论

本研究强调了CTR、NT-proBNP、CRP水平、年龄和病因等关键因素在预测HPS患者急性心力衰竭中的作用。早期识别这些预测因素有助于及时干预,可能改善预后并降低死亡率。这些发现为临床实践提供了有价值的见解,并为进一步研究HPS急性心力衰竭的管理铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f2/11606160/71b6184db486/JIR-17-9711-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验