Suppr超能文献

基于杠杆时间融合变压器的加密货币可解释多时间跨度时间序列预测

Interpretable multi-horizon time series forecasting of cryptocurrencies by leverage temporal fusion transformer.

作者信息

Farooq Arslan, Irfan Uddin M, Adnan Muhammad, Alarood Ala Abdulsalam, Alsolami Eesa, Habibullah Safa

机构信息

Institute of Computing, Kohat University of Science and Technology, Kohat, 26000, KP, Pakistan.

College of Computer Science and Engineering, University of Jeddah, Jeddah, 21959, Saudi Arabia.

出版信息

Heliyon. 2024 Nov 5;10(22):e40142. doi: 10.1016/j.heliyon.2024.e40142. eCollection 2024 Nov 30.

Abstract

This research delves into the obstacles and difficulties associated with predicting cryptocurrency movements in the volatile global financial market. This study develops and evaluates an advanced Deep Learning-Enhanced Temporal Fusion Transformer (ADE-TFT) model to estimate Bitcoin values more accurately. This research employs cutting-edge artificial intelligence (AI) and machine learning (ML) techniques to comprehensively examine various aspects of cryptocurrency forecasting, including geopolitical implications, market sentiment analysis, and pattern detection in transactional datasets. The study demonstrates that the ADE-TFT model outperforms its lower-layer counterparts in terms of forecasting accuracy, with reduced Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), and Root Mean Square Error (RMSE) values, particularly when using a higher hidden layer configuration (h=8). The study emphasizes the importance of experimenting with different normalization strategies and utilizing various market-related data to enhance the model's performance. The results suggest that improving forecasting accuracy may require addressing these limitations and incorporating additional factors, such as market sentiment. By providing investors with more precise market predictions, the techniques and information presented in this research have the potential to significantly increase investor power in an unpredictable digital currency market, enabling wise investment choices.

摘要

本研究深入探讨了在动荡的全球金融市场中预测加密货币走势所面临的障碍和困难。本研究开发并评估了一种先进的深度学习增强型时间融合Transformer(ADE-TFT)模型,以更准确地估计比特币价值。本研究采用前沿的人工智能(AI)和机器学习(ML)技术,全面考察加密货币预测的各个方面,包括地缘政治影响、市场情绪分析以及交易数据集中的模式检测。研究表明,ADE-TFT模型在预测准确性方面优于其下层同类模型,平均绝对百分比误差(MAPE)、均方误差(MSE)和均方根误差(RMSE)值降低,特别是在使用更高隐藏层配置(h=8)时。该研究强调了试验不同归一化策略以及利用各种与市场相关的数据来提高模型性能的重要性。结果表明,提高预测准确性可能需要解决这些限制并纳入其他因素,如市场情绪。通过为投资者提供更精确的市场预测,本研究中提出的技术和信息有可能显著增强投资者在不可预测的数字货币市场中的影响力,从而做出明智的投资选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b52a/11605417/15af6af3d698/gr001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验