Zhang Xiaowen, Xi Tianle, Wang Yitao, Fan Xiao, Xu Dong, Zhang Pengyan, Sun Ke, Zhang Yan, Ma Jian, Ye Naihao
National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China.
Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China.
Mar Life Sci Technol. 2024 Nov 14;6(4):700-712. doi: 10.1007/s42995-024-00259-5. eCollection 2024 Nov.
Kelps are pivotal to temperate coastal ecosystems, providing essential habitat and nutrients for diverse marine life, and significantly enhancing local biodiversity. The impacts of elevated CO levels on kelps may induce far-reaching effects throughout the marine food web, with potential consequences for biodiversity and ecosystem functions. This study considers the kelp and its symbiotic microorganisms as a holistic functional unit (holobiont) to examine their collective response to heightened CO levels. Over a 4 month cultivation from the fertilization of gametes to the development of juvenile sporophytes, our findings reveal that elevated CO levels influence the structure of the symbiotic microbiome, alter metabolic profiles, and reshape microbe-metabolite interactions using 16S rRNA amplicon sequencing and liquid chromatography coupled to mass spectrometry analysis. Notably, , , , , Milano-WF1B-44 and were selected as microbiome biomarkers, which showed significant increases in comparative abundance with elevated CO levels. Stress-response molecules including fatty-acid metabolites, oxylipins, and hormone-like compounds such as methyl jasmonate and prostaglandin F2a emerged as critical metabolomic indicators. We propose that elevated CO puts certain stress on the holobiont, prompting the release of these stress-response molecules. Moreover, these molecules may aid the kelp's adaptation by modulating the microbial community structure, particularly influencing potential pathogenic bacteria, to cope with environmental change. These results will enrich the baseline data related to the chemical interactions between the microbiota and and provide clues for predicting the resilience of kelps to future climate change.
The online version contains supplementary material available at 10.1007/s42995-024-00259-5.
海带对温带沿海生态系统至关重要,为多样的海洋生物提供重要栖息地和养分,并显著增强当地生物多样性。二氧化碳水平升高对海带的影响可能会在整个海洋食物网中引发深远影响,对生物多样性和生态系统功能产生潜在后果。本研究将海带及其共生微生物视为一个整体功能单元(共生体),以研究它们对升高的二氧化碳水平的集体反应。在从配子受精到幼体孢子体发育的4个月培养过程中,我们的研究结果表明,升高的二氧化碳水平会影响共生微生物组的结构,改变代谢谱,并使用16S rRNA扩增子测序和液相色谱-质谱联用分析重塑微生物-代谢物相互作用。值得注意的是,Milano-WF1B-44等被选为微生物组生物标志物,其相对丰度随着二氧化碳水平的升高而显著增加。包括脂肪酸代谢物、氧脂素以及茉莉酸甲酯和前列腺素F2a等激素样化合物在内的应激反应分子成为关键的代谢组学指标。我们认为,升高的二氧化碳给共生体带来一定压力,促使这些应激反应分子释放。此外,这些分子可能通过调节微生物群落结构,特别是影响潜在病原菌,来帮助海带适应环境变化。这些结果将丰富与微生物群和海带之间化学相互作用相关的基线数据,并为预测海带对未来气候变化的恢复力提供线索。
在线版本包含可在10.1007/s42995-024-00259-5获取的补充材料。